« »

Тема 6. МАСШТАБЫ ТОПОГРАФИЧЕСКИХ КАРТ

ВВЕДЕНИЕ

Топографическая карта представляет собой уменьшенное обобщенное изображение местности, показывающее элементы с помощью системы условных знаков.
В соответствии с предъявляемыми требованиями топографические карты отличаются высокой геометрической точностью и географическим соответствием. Это обеспечивается их масштабом, геодезической основой, картографическими проекциями и системой условных знаков.
Геометрические свойства картографического изображения: размеры и форма участков, занятых географическими объектами, расстояния между отдельными пунктами, направления от одного к другому – определяются его математической основой. Математическая основа карт включает в качестве составных частей масштаб, геодезическую основу, и картографическую проекцию.
Что представляет собой масштаб карты, какие виды масштабов бывают, как построить графический масштаб и как пользоваться масштабами рассмотрим на лекции.

6.1. ВИДЫ МАСШТАБОВ ТОПОГРАФИЧЕСКИХ КАРТ

При составлении карт и планов горизонтальные проекции отрезков изображают на бумаге в уменьшенном виде. Степень такого уменьшения характеризуется масштабом.


Масштаб карты (плана) – отношение длины линии на карте (плане) к длине горизонтального проложения соответствующей линии местности


 

или

m = lК : dM

Масштаб изображения небольших участков на всей топографической карте практически постоянен.При небольших углах наклона физической поверхности (на равнине) длина горизонтальной проекции линии очень мало отличается от длины наклонной линии. В этих случаях можно считать масштабом длины отношение длины линии на карте к длине соответствующей линии на местности.

Масштаб указывается на картах в разных вариантах

6.1.1. Численный масштаб

Численный масштаб выражают в виде дроби с числителем равным 1 (аликвотная дробь).

 или

1 : М

Знаменатель М численного масштаба показывает степень уменьшения длин линий на карте (плане) по отношению к длинам соответствующих линий на местности. Сравнивая между собой численные масштабы, более крупным называют тот, у которого знаменатель меньше.
Используя численный масштаб карты (плана), можно определить горизонтальное проложение линии на местности

Пример.
Масштаб карты 1:50 000. Длина отрезка на карте = 4,0 см. Определить горизонтальное проложение линии на местности.

Решение.
Умножив величину отрезка на карте в сантиметрах на знаменатель численного масштаба получаем горизонтальное проложение в сантиметрах.
d = 4,0 см × 50 000 = 200 000 см, или 2 000 м, или 2 км.

Обратите внимание на то, что численный масштаб есть величина отвлеченная, не имеющая конкретных единиц измерения. Если числитель дроби выразить в сантиметрах, то и знаменатель будет иметь те же единицы измерения, т.е. сантиметры.

Например, масштаб 1:25 000 означает, что 1 сантиметру карты соответствует 25 000 сантиметров местности, или 1 дюйм карты соответствует 25 000 дюймов местности.

Для удовлетворения потребностей хозяйства, науки и обороны страны необходимы карты различных масштабов. Для государственных топографических карт, лесоустроительных планшетов, планов лесничеств и лесонасаждений определены стандартные масштабы – масштабный ряд(табл. 6.1, 6.2).


Масштабный ряд топографических карт

Таблица 6.1.

Численный масштаб

Название карты

1 см карты соответствует
на местности расстоянию

1 см2 карты соответствует
на местности площади

1:5 000

Пятитысячная

50 м

0,25 гектар

1:10 000

Десятитысячная

100 м

1 гектар

1:25 000

Двадцатипятитысячная

250 м

6,25 гектар

1:50 000

Пятидесятитысячная

500 м

25 гектар

1:100 000

Стотысячная

1 км

1 км2

1:200 000

Двухсоттысячная

2 км

4 км2

1:500 000

Пятисоттысячная

5 км

25 км2

1:1 000 000

Миллионная

10 км

100 км2

Ранее этот ряд включал масштабы 1 : 300 000, и 1 : 2 000.

6.1.2. Именованный масштаб

Именованным масштабом называют словесное выражение численного масштаба. Под численным масштабом на топографической карте имеется надпись поясняющая, сколько метров или километров на местности соответствует одному сантиметру карты.

Например, на карте под численным масштабом 1:50 000 записано: «в 1 сантиметре 500 метров». Цифра 500 в данном примере есть величина именованного масштаба.
Используя именованный масштаб карты, можно определить горизонтальное проложение линии на местности. Для этого необходимо величину отрезка, измеренную на карте в сантиметрах, умножить на величину именованного масштаба.

Пример. Именованный масштаб карты – «в 1 сантиметре 2 километра». Длина отрезка на карте = 6,3 см. Определить горизонтальное проложение линии на местности.
Решение. Умножив величину отрезка измеренного на карте в сантиметрах на величину именованного масштаба, получаем горизонтальное проложение в километрах на местности.
d = 6,3 см × 2 = 12,6 км.

6.1.3. Графические масштабы

Чтобы избежать математических вычислений и ускорить работу на карте, пользуются графическими масштабами. Таких масштабов два: линейный и поперечный.

Линейный масштаб

Для построения линейного масштаба выбирают исходный отрезок, удобный для данного масштаба. Этот исходный отрезок (а) называют основанием масштаба (рис. 6.1).



Рис. 6.1. Линейный масштаб. Измеряемый отрезок на местности
будет CD = ED + CE = 1000 м + 200 м =1200 м.

Основание откладывают на прямой линии необходимое число раз, крайнее левое основание делят на части (отрезок b), которые будут наименьшими делениями линейного масштаба. Расстояние на местности, которое соответствует наименьшему делению линейного масштаба, называют точностью линейного масштаба.

Порядок пользования линейным масштабом:

Поперечный масштаб

Для более точных измерений пользуются поперечным масштабом (рис. 6.2, б).



Рис 6.2. Поперечный масштаб. Измеренное расстояние
PK = TK + PS + ST = 100 +10 + 7 = 117 м.

Для его построения на отрезке прямой линии откладывают несколько оснований масштаба (a). Обычно длина основания составляет 2 см или 1 см. В полученных точках устанавливают перпендикуляры к линии АB и проводят через них десять параллельных линий через равные промежутки. Крайнее левое основание сверху и снизу делят на 10 равных отрезков и соединяют их косыми линиями. Нулевую точку нижнего основания соединяют с первой точкой С верхнего основания и так далее. Получают ряд параллельных наклонных линий, которые называют трансверсалями.
Наименьшее деление поперечного масштаба равно отрезку C1D1, (рис. 6. 2, а). На такую длину отличается соседний параллельно расположенный отрезок при движении вверх по трансверсали и по вертикальной линии .
Поперечный масштаб с основанием 2 см, называют нормальным. Если основание поперечного масштаба разделено на десять частей, то его называют сотенным. В сотенном масштабе цена наименьшего деления равна одной сотой доле основания.
Поперечный масштаб гравируют на металлических линейках, которые называют масштабными.

Порядок пользования поперечным масштабом:

Точность измерения длины линии с помощью поперечного масштаба оценивается половиной цены его наименьшего деления.

6.2. РАЗНОВИДНОСТИ ГРАФИЧЕСКИХ МАСШТАБОВ

6.2.1. Переходный масштаб

Иногда в практике приходится пользоваться картой или аэроснимком, масштаб которых не является стандартным. Например, 1:17 500, т.е. 1 см на карте соответствуют 175 м на местности. Если построить линейный масштаб с основанием 2 см, то наименьшее деление линейного масштаба при этом будет 35 м. Оцифровка такого масштаба вызывает трудности при производстве практических работ.
Чтобы упростить определение расстояний по топографической карте, поступают следующим образом. Основание линейного масштаба принимают не 2 см, а рассчитывают так, чтобы оно соответствовало круглом числу метров – 100, 200, и т.д..

Пример. Требуется рассчитать длину основания соответствующего 400 м для карты масштаба 1:17 500 (в одном сантиметре 175 метров).
Чтобы определить, какие размеры на карте масштаба 1:17 500 будет иметь отрезок длиной 400 м, составляем пропорции:
на местности             на плане
175 м                                              1 см
400 м                                              Х см
Х см = 400 м× 1 см / 175 м = 2,29 см.

Решив пропорцию, делаем вывод: основание переходного масштаба в сантиметрах равно величине отрезка на местности в метрах деленное на величину именованного масштаба в метрах. Длина основания в нашем случае
а = 400 / 175 = 2,29 см.

Если теперь построить поперечный масштаб с длиной основания а = 2,29 см, то одно деление левого основания будет соответствовать 40 м (рис. 6.3).


Рис. 6.3. Переходный линейный масштаб.
Измеренное расстояние АС = ВС + АВ = 800 +160 = 960 м.

Для более точных измерений на картах и планах строят поперечный переходный масштаб.

6.2.2. Масштаб шагов

Используют этот масштаб для определения расстояний, измеренных шагами во время глазомерной съемки. Принцип построения и использования масштаба шагов подобен переходному масштабу. Основание масштаба шагов рассчитывают так, чтобы оно соответствовало круглому числу шагов (пар, троек) – 10, 50, 100 , 500.
Для расчета величины основания масштаба шагов необходимо определить масштаб съемки и рассчитать среднюю длину шага Шср.
Среднюю длину шага (пары шагов) рассчитывают по известному расстоянию, пройденному в прямом и обратном направлениях. Разделив известное расстояние на количество пройденных шагов, получают среднюю длину одного шага. При наклоне земной поверхности количество пройденных шагов в прямом и обратном направлениях будет разное. При движении в сторону повышения рельефа шаг будет короче, а в обратную сторону – длиннее.

Пример. Известное расстояние 100 м измерено шагами. В прямом направлении пройдено 137 шагов, а в обратном – 139 шагов. Рассчитать среднюю длину одного шага.
Решение. Всего пройдено: Σ м = 100 м + 100 м = 200 м. Сумма шагов составляет: Σ ш = 137 ш + 139 ш = 276 ш. Средняя длина одного шага составляет:

Шср = 200 / 276 = 0,72 м.

Удобно работать с линейным масштабом, когда масштабная линия размечена через 1 – 3 см, а деления подписаны круглым числом (10, 20, 50, 100). Очевидно, величина одного шага 0,72 м в любом масштабе будет иметь крайне малые значения. Для масштаба 1:2 000 отрезок на плане будет составлять 0,72 / 2 000 = 0,00036 м или 0,036 см. Десять шагов, в соответствующем масштабе, будут выражены отрезком 0,36 см. Наиболее удобным основанием для данных условий, по мнению автора, будет величина 50 шагов: 0,036 × 50 = 1,8 см.
Для тех, кто считает шаги парами, удобным основанием будет 20 пар шагов (40 шагов) 0,036 × 40 = 1,44 см.
Длину основания масштаба шагов можно также вычислить из пропорций или по формуле
а = (Шср × КШ) / М
где:         Шср – средняя величина одного шага в сантиметрах,
КШ – количество шагов в основании масштаба,
М – знаменатель масштаба.

Длина основания для 50 шагов в масштабе 1:2 000 с длиной одного шага равным 72 см будет составлять:
а = 72 × 50 / 2000 = 1,8 см.
Чтобы построить масштаб шагов для приведенного выше примера необходимо горизонтальную линию разделить на отрезки равные 1,8 см, а левое основание разделить на 5 или 10 равных частей.


Рис. 6.4. Масштаб шагов.
Измеренное расстояние АС = ВС + АВ = 100 + 20 = 120 ш.

6.3. ТОЧНОСТЬ МАСШТАБА 

Точность масштаба (предельная точность масштаба) – это отрезок горизонтального проложения линии, соответствующий 0,1 мм на плане. Значение 0,1 мм для определения точности масштаба принято из-за того, что это минимальный отрезок, который человек может различить невооруженным глазом.
Например, для масштаба 1:10 000 точность масштаба будет равна 1 м. В этом масштабе 1 см на плане соответствует 10 000 см (100 м) на местности, 1 мм – 1 000 см (10 м), 0,1 мм – 100 см (1 м). Из приведенного примера следует, что если знаменатель численного масштаба разделить на 10 000, то получим предельную точность масштаба в метрах.
Например, для численного масштаба 1:5 000 предельная точность масштаба будет 5 000 / 10 000 = 0,5 м.

Точность масштаба позволяет решать две важные задачи:

Практически принимается, что длина отрезка на плане или карте может быть оценена с точностью 0,2 мм. Горизонтальное расстояние на местности, соответствующее в данном масштабе 0,2 мм (0,02 см) на плане, называется графической точностью масштаба. Графическая точность определения расстояний на плане или карте может быть достигнута только при использовании поперечного масштаба.
Следует иметь в виду, что при измерениях на карте взаимного положения контуров точность определяется не графической точностью, а точностью самой карты, где ошибки могут составлять в среднем 0,5 мм вследствие влияния других, кроме графических, погрешностей.
Если учесть погрешность самой карты и погрешность измерений на карте, то можно сделать вывод, что графическая точность определения расстояний на карте в 5 – 7 хуже предельной точности масштаба, т. е. составляет 0,5 – 0,7 мм в масштабе карты.

6.4. ОПРЕДЕЛЕНИЕ НЕИЗВЕСТНОГО МАСШТАБА КАРТЫ 

В тех случаях, когда по какой-либо причине масштаб на карте отсутствует (например, обрезан при склейке), он может быть определен одним из следующих способов.

Например, координатные линии обозначены числами 28, 30, 32 и т. д. (по западной рамке) и 06, 08, 10 (по южной рамке). Ясно, что линии проведены через 2 км. Расстояние на карте между соседними линиями равно 2 см. Отсюда следует, что 2 см на карте соответствуют 2 км на местности, а 1 см на карте – 1 км на местности (именованный масштаб). Значит, масштаб карты будет 1:100 000 (в 1 сантиметре 1 километр).

Лист карты масштаба 1:1 000 000 (миллионной) обозначается одной из букв латинского алфавита и одним из чисел от 1 до 60. Система обозначений карт более крупных масштабов имеет в своей основе номенклатуру листов миллионной карты и может быть представлена следующей схемой:

1:1 000 000 –                N-37
1:500 000              –       N-37-Б
1:200 000              –       N-37-X
1:100 000              –       N-37-117
1:50 000                –       N-37-117-А
1:25 000                –       N-37-117-А-г

В зависимости от местоположения листа карты, буквы и числа, составляющие его номенклатуру, будут различны, но порядок и количество букв и чисел в номенклатуре листа карты данного масштаба будут всегда одинаковы.
Таким образом, если карта имеет номенклатуру М-35-96, то, сравнив ее с приведенной схемой, можно сразу сказать, что масштаб этой карты будет 1:100 000.
Подробнее о номенклатуре карт см. Главу 8.

Например, известно, что расстояние от н.п. Кувечино до оз. Глубокое 5 км. Измерив это расстояние на карте, получили 4.8 см. Тогда
5000 м / 4,8 см = 1042 м в одном сантиметре.
Карты в масштабе 1:104 200 не издаются, поэтому производим округление. После округления будем иметь: 1 см карты соответствует 1 000 м местности, т. е. масштаб карты 1:100 000.
Если на карте имеется дорога с километровыми столбами, то масштаб удобнее всего определять, по расстоянию между ними.

Одной минуте дуги меридиана (по восточной или западной рамке) соответствует на местности расстояние 1852 м (морская миля). Зная это, можно определить масштаб карты так же, как и по известному расстоянию между двумя объектами местности.
Например, минутный отрезок по меридиану на карте равен 1,8 см. Следовательно, в 1 см на карте будет 1852 : 1,8 = 1 030 м. Произведя округление, получаем масштаб карты 1:100 000.
В наших вычислениях получены приближенные значения масштабов. Это произошло в силу приближенности взятых расстояний и неточности их измерения на карте.

6.5. ТЕХНИКА ИЗМЕРЕНИЯ И ОТКЛАДЫВАНИЯ РАССТОЯНИЙ НА КАРТЕ

Для измерения расстояний по карте используют миллиметровую или масштабную линейку, циркуль-измеритель, а для измерения кривых линий – курвиметр.

6.5.1. Измерение расстояний миллиметровой линейкой

Миллиметровой линейкой измерить расстояние между заданными точками на карте с точностью 0,1 см. Полученное число сантиметров умножить на величину именованного масштаба. Для равнинной местности результат будет соответствовать расстоянию на местности в метрах или километрах.
Пример. На карте масштаба 1 : 50 000 (в 1 см – 500 м) расстояние между двумя точками равно 3,4 см. Определить расстояние между этими точками.
Решение. Именованный масштаб: в 1 см 500 м. Расстояние на местности между точками будет 3,4 × 500 = 1700 м.
При углах наклона земной поверхности более 10º необходимо ввести соответствующую поправку (см. далее).

6.5.2. Измерение расстояний циркулем-измерителем

При измерении расстояния по прямой линии иглы циркуля устанавливают на конечные точки, затем, не изменяя раствора циркуля, по линейному или поперечному масштабу отсчитывают расстояние. В том случае, когда раствор циркуля превышает длину линейного или поперечного масштаба, целое число километров определяется по квадратам координатной сетки, а остаток – обычным порядком по масштабу.

Измерение расстояний по линейному масштабу
Рис. 6.5. Измерение расстояний циркулем-измерителем по линейному масштабу.

Для получения длины ломаной линии последовательно измеряют длину каждого ее звена, а затем суммируют их величины. Такие линии измеряют также наращиванием раствора циркуля.
Пример. Чтобы измерить длину ломаной АВСD (рис. 6.6, а), ножки циркуля сначала ставят в точки А и В. Затем, вращая циркуль вокруг точки В. перемещают заднюю ножку из точки А в точку В', лежащую на продолжении прямой ВС.
Переднюю ножку из точки В переносят в точку С. В результате получают раствор циркуля В'С=АВ+ВС. Переместив аналогичным образом заднюю ножку циркуля из точки В' в точку С', а переднюю из С в D. получают раствор циркуля
С'D = В'С + СD, длину которого определяют с помощью поперечного или линейного масштаба.


Рис. 6.6. Измерение длины линии: а – ломаной ABCD; б – кривойA1B1C1;
 B'C' – вспомогательные точки

 

Длинные кривые отрезки измеряют по хордам шагами циркуля (см. рис. 6.6, б). Шаг циркуля, равный целому числу сотен или десятков метров, устанавливают с помощью поперечного или линейного масштаба. При перестановке ножек циркуля вдоль измеряемой линии в направлениях, показанных на рис. 6.6, б стрелками, считают шаги. Общая длина линии А1С1 складывается из отрезка А1В1, равного величине шага, умноженной на число шагов, и остатка В1С1 измеряемого по поперечному или линейному масштабу.

 

6.5.3. Измерение расстояний курвиметром

Кривые отрезки измеряют механическим (рис. 6.7) или электроннным (рис. 6.8)  курвиметром.

Картинка 5 из 1424
Рис. 6.7. Курвиметр механический

Сначала, вращая колесико рукой, устанавливают стрелку на нулевое деление, затем прокатывают колесико по измеряемой линии. Отсчет на циферблате против конца стрелки (в сантиметрах) умножают на величину масштаба карты и получают расстояние на местности. Цифровой курвиметр (рис. 6.7.) – это высокоточный, удобный в использовании прибор. Курвиметр включает архитектурные и инженерные функции и имеет удобный дисплей для чтения информации. Этот прибор может обрабатывать метрические и англо-американские (футы, дюймы, и т.д.) значения, что позволяет работать с любыми картами и чертежами. Можно ввести наиболее часто используемый вид измерений, и прибор автоматически будет переводить масштабные измерения.

Картинка 15 из 1424
Рис. 6.8. Курвиметр цифровой (электронный)

Для повышения точности и надежности результатов рекомендуется все измерения проводить дважды – в прямом и обратном направлениях. В случае незначительных различий измеренных данных за конечный результат принимается среднее арифметическое значение измеренных величин.
Точность измерения расстояний указанными способами с применением линейного масштаба составляет 0,5 – 1,0 мм в масштабе карты. То же самое, но с применением поперечного масштаба составляет 0,2 – 0,3 мм на 10 см длины линии.

6.5.4. Пересчет горизонтального проложения в наклонную дальность

Следует помнить, что в результате измерения расстояний по картам, получают длины горизонтальных проекций линий (d), а не длины линий на земной поверхности (S) (рис. 6.9).



Рис. 6.9. Наклонная дальность (S) и горизонтальное проложение (d)

Действительное расстояние на наклонной поверхности можно вычислить по формуле:


где  d – длина горизонтальной проекции линии S;
       v  – угол наклона земной поверхности.

Длину линии на топографической поверхности можно определить с помощью таблицы (табл.6.3) относительных величин поправок к длине горизонтального проложения (в %).

Таблица 6.3

Угол наклона

0

0,00

0,02

0,06

0,14

0,24

0,38

0,55

0,75

0,98

1,25

1

1,54

1,87

2,23

2,63

3,06

3,53

4,03

4,57

5,15

5,76

2

6,42

7,11

7,85

8,64

9,46

10,34

11,26

12,23

13,25

14,34

3

15,47

16,66

17,92

19,24

20,62

22,08

23,61

25,21

26,90

28,68

Правила пользования таблицей


1. В первой строке таблицы (0 десятков) приведены относительные величины поправок при углах наклона от 0° до 9°, во второй – от 10° до 19°, в третьей – от 20° до 29°, в четвертой – от 30° до 39°.
2. Чтобы определить абсолютную величину поправки, необходимо:
а) в таблице по углу наклона найти относительную величину поправки (если угол наклона топографической поверхности задан не целым числом градусов, то надо относительную величину поправки найти интерполированием между табличными величинами);
б) вычислить абсолютную величину поправки к длине горизонтального проложения (т. е. эту длину умножить на относительную величину поправки и полученное произведение разделить на 100).
3. Чтобы определить длину линии на топографической поверхности, надо вычисленную абсолютную величину поправки прибавить к длине горизонтального проложения.

Пример. На топографической карте определена длина горизонтального проложения 1735 м, угол наклона топографической поверхности – 7°15′. В таблице относительные величины поправок приведены для целых градусов. Следовательно, для 7°15' необходимо определить ближайшую большую и ближайшую меньшую величины кратные одному градусу – 8º и 7º:
  для 8° относительная величина поправки         0,98%;
  для 7°                                               0,75%;
  разность табличных величин в 1º (60′)    0,23%;
  разность между заданным углом наклона земной поверхности 7°15' и ближайшей меньшей табличной величиной 7º составляет 15'.
Составляем пропорции и находим относительную величину поправки для 15':

Для 60′ поправка составляет     0,23%;
Для 15′ поправка составляет     х%
х% = = 0,0575 ≈ 0,06%

Относительная величина поправки для угла наклона 7°15'
                             0,75%+0,06% = 0,81%
Затем надо определить абсолютную величину поправки:
                          = 14,05 м приблизительно 14 м.
Длина наклонной линии на топографической поверхности будет:
                         1735 м + 14 м = 1749 м.

При малых углах наклона (менее 4° – 5°) разница в длине наклонной линии и ее горизонтальной проекции очень мала и может не учитываться.

6.6. ИЗМЕРЕНИЕ ПЛОЩАДЕЙ ПО КАРТАМ

Определение площадей участков по топографическим картам основано на геометрической зависимости между площадью фигуры и ее линейными элементами. Масштаб площадей равен квадрату линейного масштаба.
Если стороны прямоугольника на карте уменьшены в n раз, то площадь этой фигуры уменьшится в n2 раз.
Для карты масштаба 1:10 000 (в 1 см 100 м) масштаб площадей будет равен (1 : 10 000)2 или в 1 см2 будет 100 м × 100 м = 10 000 м2 или 1 га, а на карте масштаба 1:1 000 000 в 1 см2 – 100 км2.

Для измерения площадей по картам применяют графические, аналитические и инструментальные способы. Применение того или иного способа измерений обусловлено формой измеряемого участка, заданной точностью результатов измерений, требуемой быстротой получения данных и наличием необходимых приборов.

6.6.1. Измерение площади участка с прямолинейными границами

При измерении площади участка с прямолинейными границами участок делят на простые геометрические фигуры, измеряют площадь каждой из них геометрическим способом и, суммируя площади отдельных участков, вычисленных с учетом масштаба карты, получают общую площадь объекта.

6.6.2. Измерение площади участка с криволинейным контуром

Объект с криволинейным контуром разбивают на геометрические фигуры, предварительно спрямив границы с таким расчетом, чтобы сумма отсеченных участков и сумма избытков взаимно компенсировали друг друга (рис. 6.10). Результаты измерений будут, в некоторой степени, приближенными.

Рис. 6.10. Спрямление криволинейных границ участка и
разбивка его площади на простые геометрические фигуры

6.6.3. Измерение площади участка со сложной конфигурацией

Измерение площадей участков, имеющих сложную неправильную конфигурацию, чаще производят с помощью палеток и планиметров, что дает наиболее точные результаты. Сеточная палетка представляет собой прозрачную пластину с сеткой квадратов (рис. 6.11).


Рис. 6.11. Квадратная сеточная палетка

Палетку накладывают на измеряемый контур и по ней подсчитывают количество клеток и их частей, оказавшихся внутри контура. Доли неполных квадратов оцениваются на глаз, поэтому для повышения точности измерений применяются палетки с мелкими квадратами (со стороной 2 – 5 мм). Перед работой на данной карте определяют площадь одной ячейки.
Площадь участка рассчитывается по формуле:

Р = а2n ,

Где: а – сторона квадрата, выраженная в масштабе карты;
n – число квадратов, попавших в пределы контура измеряемого участка

Для повышения точности площадь определяют несколько раз с произвольной перестановкой используемой палетки в любое положение, в том числе и с поворотом относительно ее первоначального положения. За окончательное значение площади принимают среднее арифметическое из результатов измерений.

Помимо сеточных палеток, применяют точечные и параллельные палетки, представляющие собой прозрачные пластины с награвированными точками или линиями. Точки ставятся в одном из углов ячеек сеточной палетки с известной ценой деления, затем линии сетки удаляют (рис. 6.12).


Рис. 6.12. Точечная палетка

Вес каждой точки равен цене деления палетки. Площадь измеряемого участка определяют путем подсчета количества точек, оказавшихся внутри контура, и умножают это количество на вес точки.
На параллельной палетке награвированы равноотстоящие параллельные прямые (рис. 6.13). Измеряемый участок, при наложении на него палетки, окажется разделенным на ряд трапеций с одинаковой высотой h. Отрезки параллельных линий внутри контура (посредине между линиями) являются средними линиями трапеций. Для определения площади участка с помощью этой палетки необходимо сумму всех измеренных средних линий умножить на расстояние между параллельными линиями палетки h(с учетом масштаба).

P = h∑l

Рис 6.13. Палетка, состоящая из системы
 параллельных линий

Измерение площадей значительных участков производится по картам с помощью планиметра.

Картинка 59 из 62
Рис. 6.14. Полярный планиметр

Планиметр служит для определения площадей механическим способом. Широкое распространение имеет полярный планиметр (рис. 6.14). Он состоит из двух рычагов – полюсного и обводного. Определение площади контура планиметром сводится к следующим действиям. Закрепив полюс и установив иглу обводного рычага в начальной точке контура, берут отсчет. Затем обводной шпиль осторожно ведут по контуру до начальной точки и берут второй отсчет. Разность отсчетов даст площадь контура в делениях планиметра. Зная абсолютную цену деления планиметра, определяют площадь контура.
Развитие техники способствует созданию новых приборов, повышающих производительность труда при вычислении площадей, в частности – использование современных приборов, среди которых – электронные планиметры.


Рис. 6.15. Электронный планиметр

6.6.4. Вычисление площади многоугольника по координатам его вершин
(аналитический способ)

Данный способ позволяет определить площадь участка любой конфигурации, т.е. с любым числом вершин, координаты которых (х,y) известны. При этом нумерация вершин должна производиться по ходу часовой стрелки.
Как видно из рис. 6.16, площадь S многоугольника 1-2-3-4 можно рассматривать как разность площадей S' фигуры 1у-1-2-3-3у и S" фигуры 1y-1-4-3-3у
S = S' - S".



Рис. 6.16. К вычислению площади многоугольника по координатам.

В свою очередь каждая из площадей S' и S" представляет собой сумму площадей трапеций, параллельными сторонами которых являются абсциссы соответствующих вершин многоугольника, а высотами – разности ординат этих же вершин, т. е.

S' = пл. 1у-1-2-2у + пл. 2у-2-3-3у,
S" = пл 1у-1-4-4у + пл. 4у-4-3-3у
или:
2S' = (х1+ х2) (у2 – у1) + (х2+ x3) (у3 - у2)
2S" = (х1+ х4) (у4 – у1) + (х4+ х3) (у3 - у4).

Таким образом,
2S = 1 + х2) (у2 – у1) + (х2+ x3) (у3 - у2) – 1+ х4) (у4 – у1) - (х4 + х3) (у3 - у4).
Раскрыв скобки, получаем
2S = х1у2 – х1у4 + х2 у3x2у1 + х3у4 - х3 у24 у1 - х4у3

Отсюда
2S = х12 - у4) + х23 - у1)+ х34 - у2)+х41 - у3)        (6.1)
2S = y14 - х2) + y21 -  х3)+y3(х2 - х4)+ y43 - х1)        (6.2)

Представим выражения (6.1) и (6.2) в общем виде, обозначив через i порядковый номер (i = 1, 2, ..., п) вершины многоугольника:
1           (6.3)
1           (6.4)
Следовательно, удвоенная площадь многоугольника равна либо сумме произведений каждой абсциссы на разность ординат последующей и предыдущей вершин многоугольника, либо сумме произведений каждой ординаты на разность абсцисс предыдущей и последующей вершин многоугольника.
Промежуточным контролем вычислений является удовлетворение условий:

= 0    или      = 0
Значения координат и их разности обычно округляются до десятых долей метра, а произведения – до целых квадратных метров.
Сложные формулы по расчету площади участка можно легко решить с помощью электронных таблиц MicrosoftXL. Пример для многоугольника (полигона) из 5 точек приведен в таблицах 6.4, 6.5.
В таблицу 6.4 вводим исходные данные и формулы.

Таблица 6.4.

 

A

B

C

D

1

№ т.

х

у

yi(xi-1 - xi+1)

2

1

6068120

4310250

=C2*(B6-B3)

3

2

6069350

4311780

=C3*(B2-B4)

4

3

6070540

4313350

=C4*(B3-B5)

5

4

6069680

4316140

=C5*(B4-B6)

6

5

6067840

4315520

=C6*(B5-B2)

7

Двойная площадь в м2

=СУММ(D2:D6)

8

Площадь в гектарах

=D7/2/10000

 

В таблице 6.5 видим результаты вычислений.

Таблица 6.5.

 

A

B

C

D

1

№ точ.

х

у

yi(xi-1-xi+1)

2

1

6068120

4310250

-6508477500

3

2

6069350

4311780

-10434507600

4

3

6070540

4313350

-1423405500

5

4

6069680

4316140

11653578000

6

5

6067840

4315520

6732211200

7

Двойная площадь в м2

19398600

8

Площадь в гектарах

969,93


6.7. ГЛАЗОМЕРНЫЕ ИЗМЕРЕНИЯ НА КАРТЕ

В практике картометрических работ широко используют глазомерные измерения, которые дают приблизительные результаты. Однако умение глазомерно определить по карте расстояния, направления, площади, крутизну склона и другие характеристики объектов способствует овладению навыками правильного понимания картографического изображения. Точность глазомерных определений повышается с приобретением опыта. Глазомерные навыки предупреждают грубые просчеты в измерениях приборами.
Для определения длины линейных объектов по карте следует глазомерно сравнить величину этих объектов с отрезками километровой сетки или делениями линейного масштаба.
Для определения площадей объектов как своеобразную палетку используют квадраты километровой сетки. Каждому квадрату сетки карт масштабов 1:10 000 – 1:50 000 на местности соответствует 1 км2 (100 га), масштабу 1:100 000 – 4 км2, 1:200 000 – 16 км2.
Точность количественных определений по карте, с развитием глазомера, составляет 10-15% измеряемой величины.

Видео

Задачи на определение масштаба

 

 

Задания и вопросы для самоконтроля
  1. Какие элементы включает математическая основа карт?
  2. Раскройте понятия: «масштаб», «горизонтальное проложение», «численный масштаб», «линейный масштаб», «точность масштаба», «основания масштаба».
  3. Что представляет собой именованный масштаб карты и как им пользоваться?
  4. Что представляет собой поперечный масштаб карты, для какой цели он предназначен?
  5. Какой поперечный масштаб карты считают нормальным?
  6. Какие масштабы топографических карт и лесоустроительных планшетов применяют в Украине?
  7. Что представляет собой переходный масштаб карты?
  8. Как рассчитывают основание переходного масштаба?
  9. Как рассчитать масштаб шагов?
  10. Как подобрать масштаб для размещения плана на листе определенных размеров?
  11. Объясните порядок измерения на карте прямой линии.
  12. Объясните порядок измерения на карте ломаной линии.
  13. Объясните порядок измерения на карте кривой извилистой линии с помощью циркуля-измерителя.
  14. Объясните порядок измерения на карте кривой извилистой линии с помощью курвиметра.
  15. Перечислите и поясните способы пересчета величины горизонтального проложения в наклонную дальность.
  16. Какая геометрическая зависимость между площадью фигуры и ее линейными элементами?
  17. Объясните порядок определения площади участка с прямолинейными границами.
  18. Объясните порядок определения площади участка с криволинейным контуром.
  19. Объясните порядок определения площади участка с помощью сеточной палетки.
  20. Объясните порядок определения площади участка с помощью точечной палетки.
  21. Объясните порядок определения площади участка с помощью параллельной палетки.
  22. Объясните порядок определения площади участка с помощью планиметра.
  23. Объясните порядок вычисления площади многоугольника по координатам его вершин.
  24. Как глазомерно по топографической карте можно определить длину линейного объекта?
  25. Какой площади на местности соответствует один квадрат координатной сетки карты масштаба 1:25 000?

 

 

Яндекс.Метрика