« »

Тема 10. ЗАДАЧИ, РЕШАЕМЫЕ ПО КАРТАМ (ПЛАНАМ) С ПОМОЩЬЮ ГОРИЗОНТАЛЕЙ

10.1. Определение высот течек на карте

Если точка расположена на горизонтали, то ее высоту устанавливают по высоте этой горизонтали. Высоту (отметку) точки, расположенной между горизонталями (рис. 10.1, а), можно определить, если через нее провести линию ab по кратчайшему расстоянию между горизонталями.


Рис. 10.1. Определение отметки точки

Из подобия треугольников abb1  и acc1, учитывая, что h – высота сечения рельефа, d – заложение (рис. 10.1, б), получим
cc1 = ac × bb1 / ab или Δh = Δd h /d.
Отметка точки Нс будет равна отметке точки a плюс величина Δh:

Нс = На + Δh.

Величины d и Δd измеряют на карте, а высота сечения рельефа подписана под масштабом карты.

10.2. Определение уклона линии

Пусть линия местности AB (рис. 10.2) наклонена к горизонту АС под углом v. Тангенс этого угла называют уклоном линиии обозначают буквой i:

1 ,

т. е. уклон линии равен отношению превышения hк горизонтальному проложению S.


Рис. 10.2. Схема определения уклона линии

Пример. Если h = 1 м, a S =20 м, то i = 1/20 = 0,05

Уклон i = 0,05 показывает, что линия местности повышается или понижается на 5 см через каждый 1 м или на 5 м через каждые 100 м горизонтального расстояния S.
Если превышение положительное (+h), то уклон положителен (линия направлена вверх на подъем), а когда превышение отрицательное (-h) – уклон отрицателен и линия направлена вниз на спуск.

Уклон линии численно можно рассматривать как превышение, приходящееся на единицу горизонтального расстояния.

Измерив на карте длину заложения(расстояние между двумя соседними горизонталями по заданному направлению) и зная высоту сечения, можно найти уклон линии. Уклон обычно выражают в процентах или промилле (промилле – это тысячная часть целого или 1/10 процента).

Пример. Измеренное по карте заложение d= 29 м. Высота сечения h = 1 м. Найти уклон линии.
i = 1/29 = 0,034
или, выразив уклон в процентах, получим i = 3,4%.
3,4% означает, что разница высот в начале и конце 100 метрового горизонтального участка составляет 3,4 м.
Если умножить 3,4% на 10, получим величину уклона в промилле (‰)
3,4% × 10 = 34‰
Уклон 34‰ означает, что разность высот в начале и конце горизонтального участка длиной 1 000 м составит 34 м.

Символ можно ввести на компьютере с помощью Alt-0137: при включённом NumLock, удерживая левый Alt, набрать на цифровом блоке клавиатуры 0137.

Если вычислить тангенс угла по четырехзначным математическим таблицам Брадиса (таблица 10.1), то получим наклон линии градусах.

Таблица 10.1.

Например, из таблицы 10.1 по величине 0,034 находим значение угла наклона 1º58′ (используем интерполяцию).

Обратите внимание на то, что наклон линии выражается в градусах, а уклон в процентах или в промилле!

10.3. Определение крутизны ската

10.3.1. Определение крутизны ската с помощью графика заложений
Мерою крутизны склона служит уклон, или тангенс угла наклона линии местности к плоскости горизонта. Расстояние между горизонталями (заложение) может быть разное, а превышение (вертикальное расстояние) между горизонталями в любом случае одно и то же. Следовательно, линия, соответствующая меньшему заложению, имеет больший уклон. Очевидно, самому короткому расстоянию между двумя соседними горизонталями соответствует самая крутая линия на местности.
Для графического определения углов наклона v по заданному значению заложения а, масштабу 1:М и высоте сечения h строят график заложения (рис. 10.3).
Вдоль прямой линии основания графика намечают точки, соответствующие значению углов наклона. По перпендикуляру к основанию графика от этих точек откладывают отрезки (в масштабе карты), равные соответствующим заложением, а именно a = h / tgv. Концы этих отрезков соединяют плавной кривой.


Рис. 10.3. Графики заложения:
а – для углов наклона; б – для уклонов

При работе с картой или планом угол наклона либо уклон определяют, пользуясь графиками, которые помещают под южной рамкой топографических карт и планов. Для этого с карты раствором циркуля-измерителя берут заложения между двумя горизонталями по данному скату, затем по графику находят то место, где расстояние между кривой и горизонтальной прямой равно этому заложению. Для найденной таким образом ординаты определяют значение ν или i по горизонтальной прямой (на приведенных графиках отмечено звездочками: ν = 1º15′; i = 0,025 = 25%).
График заложений может быть использован только для работы на карте (плане) лишь того масштаба и такой высоты сечения рельефа, для которых он построен.

10.3.2. Определение крутизны ската вычислением
 Для этого надо высоту сечения умножить на постоянное число 60 и полученное значение разделить на заложение, выраженное в масштабе карты, крутизна склона получается в градусах.

1
Например, для карты масштаба 1 : 25 000

1

10.3.3. Определение крутизны ската глазомерно
Крутизна склонов глазомерно вычисляется на основании следующей закономерности: на картах со стандартной высотой сечения заложению в 1 см соответствует крутизна склона в 1,2° (округленно 1°), заложению в 1 мм соответствуют 10°, т. е. крутизна склонов обратно пропорциональна величине заложения. Если, например, заложение в 2 раза меньше сантиметрового отрезка (0,5 см), то крутизна увеличится в 2 раза и составит приблизительно 2°, и наоборот, при увеличении заложения в 2 раза по сравнению с сантиметровым отрезком крутизна уменьшится до 0°30' и т. д. Контролировать определение крутизны склонов можно путем сравнения заложения на конкретных участках с отрезками графика заложений.

10.4. Построение профиля местности по данным топографической карты

Профиль — это вертикальный разрез рельефа местности по заданному направлению. Построение профиля по направлению АВ показано на рис. 10.4.
Порядок построения профиля
1. Прочертить карандашом на карте профильную линию АВ, направление которой задано.
2. Оценить максимальную и минимальную высоту по линии профиля.
Hmax = 86,7 м; Нmin = 56,5 м. Разность  – 30,2 м. Если разность высот округлить в большую сторону, получаем 7 интервалов по 5 м.
3. Задать горизонтальный и вертикальный масштабы профиля.
Горизонтальной линией профиля является ось расстояний, вертикальной линией – ось высот.


Рис. 10.4. Построение профиля местности по карте

Обычно горизонтальный масштаб профиля равен масштабу топографической карты, по которой он строится, а вертикальный масштаб принимают в 10 раз крупнее горизонтального. Например, масштаб карты 1:50 000. Следовательно, горизонтальный масштаб профиля равен 1:50 000, а вертикальный масштаб – 1:5 000. В некоторых случаях, для большей наглядности, применяют более крупные масштабы высот, либо укрупняют и горизонтальный масштаб. В любом случае для основания масштаба рекомендуется выбирать числа: 1; 2; 2,5; 5 (1:1000, 1:200, 1:50 и т.п.). В нашем примере горизонтали проведены через 5 м. Если взять высоту профиля (без надписей) 7 см, то получим  вертикальный масштаб 1:500 (в 1 см 5 м).
4. Построить горизонтальную и вертикальную оси координат профиля и оцифровать их в соответствии с выбранными горизонтальным и вертикальным масштабами.
Вертикальная координатная осьшкала высот начинается с абсолютной отметки, выбранной для основания профиля, так называемой линии (точки) условного горизонта. Ее значение должно быть меньше минимальной абсолютной отметки по линии профиля и выражено круглым числом. В зависимости от выбранной точки условного горизонта оцифровывают остальные деления шкалы высот. Работа по построению профиля упрощается, если оцифровка шкалы высот совпадает со значениями отметок горизонталей на карте. Условный горизонт на рис. 10.4 равен 50 м.
На горизонтальной оси отложить отрезки, соответствующие пересечениям горизонталей с профильной линией, а также точек пересечения линии профиля с объектами ситуации (дорогами, линиями связи, объектами гидрографии, границами лесов и т.п.). Для этого можно воспользоваться полоской бумаги, на которую вначале с карты переносят характерные точки, а затем с полоски бумаги эти точки переносят на горизонтальную линию профиля.
5. Из отмеченных точек на горизонтальной оси восстановить перпендикуляры, соответствующие их абсолютным высотам. Полученные точки соединить плавной линией.
В некоторых случаях на профильной линии можно определить высоты дополнительных точек. Если, например, точка находится между горизонталями, то ее высоту легко найти интерполированием заложения.
При пересечении лощины (хребта) дополнительную точку определяют на линии водослива (водораздела) также методом интерполирования.
При пересечении седловины для точки седловины принимают, что она находится на половине высоты сечения рельефа от ближайшей к ней горизонтали.
Для точки 16, находящейся рядом с вершиной горы, определение высоты связано с построением однородного отрезка ав. В этом случае превышение точки в по отношению к вершине горы будет отрицательным:
hв = 85,0 - 87,8 = -2,8 м
Длина отрезка ав равна 26 мм, отрезка от точки а до точки №16  – 10 мм. Из пропорции находим, что
ав = -2,8 м (10 мм / 26 мм) = -1,1 м
Следовательно, высота точки №16 будет равна
Н16 = 87,8 - 1,1 = 86,7 м
Если высоты точек профиля определяют дополнительно, то их значения записывают в скобках.
Характерными точками рельефа и ситуации являются точки перегибов рельефа, линии водоразделов и водосливов (тальвеги), седловины, вершины гор (холмов), дна котловин (ям), пересечения с объектами линейного типа, гидрографией, а также и другие точки, представляющие интерес для исполнителя.

10.5. Построение на карте (плане) линии заданного уклона

Задача построения линии заданного уклона часто встречается в практике при проектировании трассы дороги, трубопровода и т. д. Определение положения такой линии может производиться на топографических картах и планах.
Рассмотрим задачу нанесения на топографическую карту (план) линии заданного уклона на следующем примере. Допустим, что из точки М (рис. 10.5) на топографической карте с высотой сечения рельефа 5 м требуется провести кратчайшую ломаную линию по направлению к точке N так, чтобы уклоны отдельных участков ее не превышали 5 %. Тогда подъем или спуск (превышение) вдоль линии допускается не более 1 м на каждые 20 м или 5 м на 100 м горизонтального расстояния.


Рис. 10.5. Схема поиска линии заданного уклона

Так как горизонтали проведены на плане через 5 м, то при соблюдении требования 5% уклона расстояние между смежными горизонталями должно быть 100 м. Поэтому, взяв в раствор циркуля-измерителя по масштабу плана 100 м, засекаем этим раствором циркуля из точки М горизонталь с высотой 35 м в двух точках с и е. Из этих точек тем же раствором 100 м засекаем точки на горизонтали с высотой 40 м. Если этот прием продолжим далее, то получим два варианта положения на плане линии заданного уклона MсN и MeN. Вариант MсN извилистее и длиннее, направление MeNменее извилисто, короче по длине и может быть принято за окончательное.

10.6. Определение границы водосборной площади и площади затопления

Водосборной площадью называется территория, с которой вода атмосферных осадков стекает к данному пункту водосбора. На рис. 10.6 обозначена плотина АВ на горизонтали с высотой 185 м с зеркалом воды (обозначено штриховкой). Требуется показать на плане границу площади, с которой вода атмосферных осадков стекает к плотине.


Рис. 10.6. Схема определения границ водосборной площади

Граница водосборной площади показана пунктиром, который проходит по водораздельным линиям CDMEF. Для этого сначала в верховье лощины находят середину седловины М и вершины холмов, примыкающих к ней. От водоразделов к плотине граница проходит перпендикулярно горизонталям.
По карте определяют также площадь затопления – территорию, которую заливает вода в результате строительства искусственного водоема. Работа начинается с нанесения на карту положения плотины с учетом отметки уровня воды в будущем водоеме. Условие будет выполнено, если на месте возведения плотины соединить на противоположных склонах водотока одноименные горизонтали с заданной высотой. Площадь затопления ограничится горизонталью, замыкаемой плотиной (рис. 10.7).


Рис. 10.7. Определение водосборной площади и площади затопления по карте

Если отметки горизонталей не соответствуют уровню будущего водоема, то для определения его контура методом интерполяции находят точки с заданной высотой, которые затем соединяют кривой. Следует обратить внимание на особенности оконтуривания водосборной площади реки и водоема: для реки граница замыкается в ее устье, для водоема – на концах плотины.

10.7. Построение орографической схемы рельефа местности

Орографическая (греч. oros гора и grapho пишу, описываю)  схема является одним из видов носителей информации о местности. Это изображение местности с прорисовкой хребтов и долин. По таким схемам легко ориентироваться в горах.
Орографическая схема рельефа местности получается в результате проведения по карте линий водоразделов и тальвегов. Водоразделы проходят по точкам, от которых линии скатов расходятся в разные стороны, тальвеги – по точкам, в которых линии скатов сходятся (рис. 10.8,a). Размещаются такие точки в местах наибольшей кривизны горизонталей.

Рис. 10.8. Положение водоразделов и тальвегов, определяемое по горизонталям (а) и образуемая ими орографическая схема (б)

10.8. Определение формы ската

Скаты могут иметь равномерную (постоянную) кривизну, тогда форма (экспозиция) такого ската называется ровной; промежутки между горизонталями (заложения) здесь будут одинаковыми.



Рис. 10.9. Формы скатов

Но чаще можно встретить скаты, крутизна которых меняется. Если крутизна по направлению спуска увеличивается (заложения уменьшаются), то такой скат называют выпуклым, и, наоборот, при уменьшении крутизны по направлению спуска скат называют вогнутым. На волнистых склонах чередуются выпуклые и вогнутые участки; эти скаты имеют горизонтали, расположенные на различном удалении одна от другой.

Вопросы и задания для самоконтроля

  1. Как определить абсолютную высоту точки и превышение?
  2. Как провести на карте водораздельную линию и тальвег?
  3. Как установить (определить) границы площади водосбора?
  4. Что такое профиль местности и как его построить?
  5. Как определить среднюю высоту бассейна?
  6. Как определить средний уклон бассейна?
  7. Как определить объем бассейна?
  8. Как определить форму ската с помощью горизонталей?

 

 

Яндекс.Метрика