« »

Тема 5. КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ И ИСКАЖЕНИЯ

5.1. ОБЩИЕ ПОНЯТИЯ О КАРТОГРАФИЧЕСКИХ ПРОЕКЦИЯХ

При переходе от физической поверхности Земли к ее отображению на плоскости (на карте) выполняют две операции: проектирование земной поверхности с ее сложным рельефом на поверхность земного эллипсоида, размеры которого установлены посредством геодезических и астрономических измерений, и изображение поверхности эллипсоида на плоскости посредством одной из картографических проекций.
Картографическая проекция - определенный способ отображения поверхности эллипсоида на плоскости.
Отображение земной поверхности на плоскости производится различными способами. Самый простой из них - перспективный. Суть его заключается в проектировании изображения с поверхности модели Земли (глобуса, эллипсоида) на поверхность цилиндра или конуса с последующим разворотом в плоскость (цилиндрические, конические) или непосредственным проектированием сферического изображения на плоскость (азимутальные).
Одним из простых способов понимания того, как картографические проекции изменяют пространственные свойства, является визуализация проекции света сквозь Землю на поверхность, которая называется проекционной поверхностью.
Представьте себе, что поверхность Земли прозрачна, и на ней нанесена картографическая сетка. Оберните кусок бумаги вокруг Земли. Источник света в центре Земли отбросит тени от сетки координат на кусок бумаги. Вы можете теперь развернуть бумагу и положить ее на плоскость. Форма координатной сетки на плоской поверхности бумаги очень отличается от ее формы на поверхности Земли (рис. 5.1).

41

Рис. 5.1. Картографическая сетка географической системы координат, спроектированная на цилиндрическую поверхность

Проекция карты исказила картографическую сетку; объекты, расположенные у полюса, вытянуты.
Построение перспективным способом не требует использования законов математики. Обратите внимание на то, что в современной картографии картографические сетки строят аналитическим (математическим) способом. Его суть заключается в расчете положения узловых точек (точек пересечения меридианов и параллелей) картографической сетки. Расчет выполняется на основе решения системы уравнений, которые связывают географическую широту и географическую долготу узловых точек (φ, λ) с их прямоугольными координатами (х, у) на плоскости. Эта зависимость может быть выражена двумя уравнениями вида:

х = f1(φ, λ);     (5.1)
у = f2(φ, λ),     (5.2)

называемыми уравнениями картографических проекций. Они позволяют вычислять прямоугольные координаты х, у изображаемой точки по географическим координатам φ и λ. Число возможных функциональных зависимостей и, следовательно, проекций неограниченно. Необходимо лишь, чтобы каждая точка φ, λ эллипсоида изображалась на плоскости однозначно соответствующей точкой х, у и чтобы изображение было непрерывным.

5.2. ИСКАЖЕНИЯ

Разложить сфероид на плоскость нисколько не легче, чем расплющить кусок арбузной кожуры. При переходе на плоскость, как правило, искажаются углы, площади, формы и длины линий, поэтому для конкретных целей можно создать проекции, которые значительно уменьшат какой-либо один вид искажений, например, площадей. Картографическим искажением называют нарушение геометрических свойств участков земной поверхности и расположенных на них объектов при их изображении на плоскости.
Искажения всех видов тесно связаны между собой. Они находятся в такой зависимости, что уменьшение одного вида искажения сразу же влечет увеличение другого. При уменьшении искажений площадей увеличиваются искажения углов и т.д. Рис. 5.2 демонстрирует, как трехмерные объекты сжимаются для того, чтобы их можно было поместить на плоскую поверхность.

5_2

Рис. 5.2. Проектирование сферической поверхности на поверхность проекции

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.
В середине XIX века французским ученым Николя Аугустом Тиссо была дана общая теория искажений. В своей работе он предложил использовать специальные эллипсы искажений, которые представляют собой бесконечно малые эллипсы в любой точке карты, являющиеся отображением бесконечно малых окружностей в соответствующей точке на поверхности земного эллипсоида или шара. Эллипс становится окружностью в точке нулевых искажений. Изменение формы эллипса отражает степень искажения углов и расстояний, а размера – степень искажения площадей.

43

Рис. 5.3. Эллипс на карте (а) и соответствующий ему круг на глобусе (б)

Эллипс искажений на карте может занимать различное положение относительно меридиана, проходящего через его центр. Ориентировка эллипса искажений на карте обычно определяется азимутом его большой полуоси. Угол между северным направлением меридиана, проходящего через центр эллипса искажений, и его ближайшей большой полуосью называется углом ориентировки эллипса искажений. На рис. 5.3, а этот угол обозначен буквой  А0, а соответствующий ему угол на глобусе α0 (рис. 5.3, б).
Азимуты любого направления на карте и на глобусе всегда отсчитываются от северного направления меридиана по ходу часовой стрелки и могут иметь значения от 0 до 360°.
Любое произвольное направление (ОК) на карте или на глобусе (О0К0) может быть определено или азимутом данного направления (А – на карте, α – на глобусе) или углом между ближайшей к северному направлению меридиана большой полуосью и данным направлением (v – на карте, u – на глобусе).

5.2.1. Искажения длин

Искажение длин – базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.
Это означает, что на карте присутствует 2 вида масштаба:

Главным масштабом карты называют степень общего уменьшения земного шара до определенных размеров глобуса, с которого земная поверхность переносится на плоскость. Он позволяет судить об уменьшении длин отрезков при перенесении их с земного шара на глобус. Главный масштаб записывается под южной рамкой карты, но это не значит, что отрезок измеренный в любом месте карты будет соответствовать расстоянию на земной поверхности.
Масштаб в данной точке карты по данному направлению называют частным. Он определяется как отношение бесконечно малого отрезка на карте dlК к соответствующему ему отрезку на поверхности эллипсоида dlЗ. Отношение частного масштаба к главному, обозначаемое через μ, характеризует искажение длин

43 (5.3)

Для оценки отклонения частного масштаба от главного пользуются понятием увеличения масштаба (С), определяемого отношением

44 (5.4)

Из формулы (5.4) следует, что:

Например, если при главном масштабе карты 1 : 1 000 000 увеличение масштаба С равно 1,2, то µ = 1,2/1 000 000 = 1/833 333, т. е. одному сантиметру на карте соответствует примерно 8,3 км на местности. Частный масштаб крупнее главного (величина дроби больше).
При изображении поверхности глобуса на плоскости частные масштабы численно будут больше или меньше главного масштаба. Если принять главный масштаб равным единице (М = 1), то частные масштабы численно будут больше или меньше единицы. В этом случае под частным масштабом, численно равным увеличению масштаба, следует понимать отношение бесконечно малого отрезка в данной точке карты по данному направлению к соответствующему бесконечно малому отрезку на глобусе:

45 (5.5)

Отклонение частного масштаба (µ) от единицы определяет искажение длины в данной точке карты по данному направлению (V):

V = µ – 1              (5.6)

Часто искажение длины выражают в процентах к единице, т. е. к главному масштабу, и называют относительным искажением длины:

q = 100(µ – 1) = V×100                        (5.7)

Например, при µ = 1,2 искажение длины V = +0,2 или относительное искажение длины V = +20%. Это означает, что отрезок длиной 1 см, взятый на глобусе, изобразится на карте отрезком длиной 1,2 см.
Судить о наличии на карте искажения длин удобно путем сравнения величины отрезков меридианов между соседними параллелями. Если они повсеместно равны, то искажения длин по меридианам нет, если такого равенства нет (рис. 5.5 отрезки АВ и CD), то искажение длин линий имеется.

45
Рис. 5.4. Часть карты восточного полушария с показом картографических искажений

Если карта отображает такую большую территорию, что на ней показаны и экватор 0º и параллель 60° широты, то нетрудно по ней установить, имеется ли искажение длин вдоль параллелей. Для этого достаточно сравнить длину отрезков экватора и параллели с широтой 60° между соседними меридианами. Известно, что параллель 60° широты в два раза короче экватора. Если таково же соотношение указанных отрезков на карте, то искажения длин по параллелям нет; в противном случае оно имеется.
Наибольший показатель искажения длин у данной точки (большая полуось эллипса искажений) обозначают латинской буквой а, а самый меньший (малая полуось эллипса искажений) – b. Взаимно перпендикулярные направления, по которым действуют наибольший и наименьший показатели искажения длин, называют главными направлениями.
Для оценки различных искажений на картах из всех частных масштабов наибольшее значение имеют частные масштабы по двум направлениям: по меридианам и по параллелям. Частный масштаб по меридиану принято обозначать буквой m, а частный масштаб по параллели – буквой n.
В пределах мелкомасштабных карт сравнительно небольших территорий (например, Украины) отклонения масштабов длин от указанного на карте масштаба невелики. Ошибки при измерении длин в этом случае не превышают 2 – 2,5% от измеряемой длины, и ими в работе со школьными картами можно пренебречь. К некоторым картам для приближенных измерений прилагается измерительная масштабная линейка, сопровождаемая пояснительным текстом.
На морских картах, построенных в проекции Меркатора и на которых локсодромия изображается прямой линией, не дается специального линейного масштаба. Его роль выполняют восточная и западная рамки карты, представляющие собой меридианы, разбитые на деления через 1′ по широте.
В морской навигации расстояния принято оценивать в морских милях. Морская миля – это средняя длина дуги меридиана в 1′ по широте. Она заключает в себе 1852 м. Таким образом, рамки морской карты фактически разбиты на отрезки равные одной морской миле. Определив по прямой расстояние между двумя точками на карте в минутах меридиана, получают действительное расстояние в морских милях по локсодромии.

46
Рис 5.5. Измерение расстояний по морской карте.

5.2.2. Искажения углов

Искажения углов логически вытекают из искажения длин. За характеристику искажений углов на карте принимают разность углов между направлениями на карте и соответствующими направлениями на поверхности эллипсоида.
За показатель искажения углов между линиями картографической сетки принимают величину отклонения их от 90° и обозначают его греческой буквой ε (эпсилон).
ε = Ө – 90°, (5.8)
где в Ө (тэта) – измеренный на карте угол между меридианом и параллелью.

На рисунке 5.4 обозначено, что угол  Ө равен 115°, следовательно, ε = 25°.
В точке, где угол пересечения меридиана и параллели остается на карте прямым, углы между другими направлениями могут быть измененными на карте, поскольку в каждой данной точке величина искажения углов может изменяться с переменой направления.
За общий показатель искажения углов ω (омега) принимают наибольшее искажение угла в данной точке, равное разности его величины на карте и на поверхности земного эллипсоида (шара). При известны
х показателях а и b величину ω определяют по формуле:

49(5.9)

5.2.3. Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде.
Простой способ выявления искаженности этого вида состоит в сравнении площадей клеток картографической сетки, ограниченных одноименными параллелями: при равенстве площадей клеток искажения нет. Это имеет место, в частности, на карте полушария (рис. 4,4), на которой заштрихованные клетки различаются по форме, но имеют одинаковую площадь.
Показатель искажения площадей (р) вычисляют как произведение наибольшего и наименьшего показателей искажения длин в данном месте карты
p = а×b (5.10)
Главные направления в данной точке карты могут совпадать с линиями картографической сетки, но могут с ними не совпадать. Тогда показатели а и b по известным m и n вычисляют по формулам:

411 (5.11)
412 (5.12)

Входящий в уравнения показатель искажения р узнают в этом случае по произведению:

p = m×n×cos ε, (5.13)

где ε ( эпсилон) – величина отклонения угла пересечения картографической сетки от 90°.

5.2.4. Искажения форм

Искажение форм состоит в том, что форма участка или занятой объектом территории на карте отлична от их формы на уровенной поверхности Земли. Наличие искажения этого вида на карте можно установить путем сопоставления формы клеток картографической сетки, расположенных на одной широте: если они одинаковы, то искажения нет. На рисунке 5.4 две заштрихованные клетки различием формы свидетельствуют о наличии искажения данного вида. Можно также выявить искаженность формы определенного объекта (материка, острова, моря) по соотношению его ширины и длины на анализируемой карте и на глобусе.
Показатель искажения форм (k) зависит от различия наибольшего (а) и наименьшего (b) показателей искажения длин в данном месте карты и выражается формулой:

414 (5.14)

При исследовании и при выборе картографической проекции используют изоколы –  линии равных искажений. Они могут наноситься на карту в виде пунктирных линий с целью показа величин искажений.

44

Рис. 5.6. Изоколы наибольших искажений углов

5.3. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ХАРАКТЕРУ ИСКАЖЕНИЙ

Для различных целей создаются различные по характеру искажений проекции. Характер искажений проекции определяется отсутствием в ней определенных искажений (углов, длин, площадей). В зависимости от этого все картографические проекции по характеру искажений подразделяются на четыре группы:
— равноугольные (конформные);
— равнопромежуточные (эквидистантные);
—равновеликие (эквивалентные);
— произвольные.

5.3.1. Равноугольные проекции

Равноугольными называются такие проекции, в которых направления и углы изображаются без искажений. Углы, измеренные на картах равноугольных проекций, равны соответствующим углам на земной поверхности. Бесконечно малая окружность в этих проекциях всегда остается окружностью.
В равноугольных проекциях масштабы длин в любой точке по всем направлениям одинаковы, поэтому у них нет искажения формы бесконечно малых фигур и нет искажения углов (рис. 5.7, Б). Это общее свойство равноугольных проекций выражает формула ω = 0°. Но формы реальных (конечных) географических объектов, занимающих целые участки на карте, искажаются (рис. 5.8, а). У равноугольных проекций наблюдаются особенно большие искажения площадей (что отчетливо демонстрируют эллипсы искажений).

47

Рис. 5.7. Вид эллипсов искажений в проекциях равновеликих —- А, равноугольных — Б, произвольных — В, в том числе, равнопромежуточных по меридиану — Г и равнопромежуточных по параллели — Д. На схемах показано искажение угла 45°.

Эти проекции используются для определения направлений и прокладки маршрутов по заданному азимуту, поэтому их всегда используют на топографических и навигационных картах. Недостатком равноугольных проекций является то, что в них сильно искажаются площади (рис. 5.7, а).

48
Рис. 5.8. Искажения в цилиндрической проекции:
а –  равноугольной; б – равнопромежуточной; в – равновеликой

5.6.2. Равнопромежуточные проекции

Равнопромежуточными проекциями называют проекции, у которых масштаб длин одного из главных направлений сохраняется (остается неизменным) (рис. 5.7, Г. рис. 5.7, Д.) Применяются главным образом для создания мелкомасштабных справочных карт и карт звездного неба.


5.6.3. Равновеликие проекции

Равновеликими называются проекции, в которых нет искажений площадей, т. е. площадь фигуры, измеренной на карте, равна площади этой же фигуры на поверхности Земли. В равновеликих картографических проекциях масштаб площади повсюду имеет одну и ту же величину. Это свойство равновеликих проекций можно выразить формулой:

P = a× b = Const = 1 (5.15)

Неизбежным следствием равновеликости этих проекций является сильное искажение у них углов и форм, что хорошо поясняют эллипсы искажений (рис. 5.7, A).

5.6.4. Произвольные проекции

К произвольным относятся проекции, в которых имеются искажения длин, углов и площадей. Необходимость использования произвольных проекций объясняется тем, что при решении некоторых задач возникает необходимость в измерении углов, длин и площадей на одной карте. Но ни одна проекция не может быть одновременно и равноугольной, и равнопромежуточной, и равновеликой. Ранее уже говорилось, что с уменьшением изображаемого участка поверхности Земли на плоскости уменьшаются и искажения изображения. При изображении небольших участков земной поверхности в произвольной проекции величины искажений углов, длин и площадей незначительны, и при решении многих задач их можно не учитывать.

5.4. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ВИДУ НОРМАЛЬНОЙ КАРТОГРАФИЧЕСКОЙ СЕТКИ

В картографической практике распространена классификация проекций по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические, когда вспомогательной поверхностью служит боковая поверхность цилиндра; конические, когда вспомогательной плоскостью является боковая поверхность конуса; азимутальные, когда вспомогательная поверхность – плоскость (картинная плоскость).
Поверхности, на которые проектируют земной шар, могут быть к нему касательными или секущими его. Они могут быть и по-разному ориентированы.
Проекции, при построении которых оси цилиндра и конуса совмещались с полярной осью земного шара, а картинная плоскость, на которую проектировалось изображение, размещалась касательно в точке полюса, называются нормальными.
Геометрическое построение названных проекций отличается большой наглядностью.


5.4.1. Цилиндрические проекции

Для простоты рассуждения вместо эллипсоида воспользуемся шаром. Заключим шар в цилиндр, касательный по экватору (рис. 5.9, а).

49
Рис. 5.9. Построение картографической сетки в равновеликой цилиндрической проекции

Продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями аАа1, бБб1, вВв1 ..., перпендикулярными экватору АБВ.
Изображение параллелей может быть получено различными способами. Один из них – продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам.
Полученная цилиндрическая проекция (рис. 5.9, б) будет равновеликой, так как боковая поверхность шарового пояса АГЕД, равная 2πRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по мере удаления от экватора.
Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция будет равнопромежуточной по меридианам (рис. 5.8, б).
Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах (см. рис. 5.8, а).
Нередко вместо касательного цилиндра используют цилиндр, секущий сферу по двум параллелям (рис. 5.10), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях – больше главного масштаба.

410
Рис. 5.10. Цилиндр, секущий шар по двум параллелям

5.4.2. Конические проекции

Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 5.11, а).

411
Рис. 5.11. Построение картографической сетки в равнопромежуточной конической проекции

Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 5.11, б) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ,..., исходящими из точки Т. Обратите внимание на то, что углы между ними (схождение меридианов) будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб.
Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из определенных условий, одно из которых – сохранение главного масштаба вдоль меридианов (АЕ = Ае) – приводит к конической равнопромежуточной проекции.

5.4.3. Азимутальные проекции

Для построения азимутальной проекции воспользуемся плоскостью, касательной к шару в точке полюса П (рис. 5.12). Пересечения плоскостей меридианов с касательной плоскостью дают изображение меридианов Па, Пе, Пв,... в виде прямых, углы между которыми равны разностям долгот. Параллели, являющиеся концентрическими окружностями, могут быть определены различным путем, например, проведены радиусами, равными выпрямленным дугам меридианов от полюса до соответствующей параллели ПА = Па. Такая проекция будет равнопромежуточной по меридианам и сохраняет вдоль них главный масштаб.

412
Рис. 5.12. Построение картографической сетки в азимутальной проекции

Частным случаем азимутальных проекций являются перспективные проекции, построенные по законам геометрической перспективы. В этих проекциях каждая точка поверхности глобуса переносится на картинную плоскость по лучам, выходящим из одной точки С, называемой точкой зрения. В зависимости от положения точки зрения относительно центра глобуса проекции подразделяются на:

413
Рис. 5.13. Виды перспективных проекций: а – центральная;
б – стереографическая; в – внешняя; г – ортографическая.

5.4.4. Условные проекции

Условные проекции – проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др. В частности, к условным принадлежат псевдоцилиндрические, псевдоконические, псевдоазимутальные и другие проекции, полученные путем преобразования одной или нескольких исходных проекций.
У псевдоцилиндрических проекций экватор и параллели – прямые, параллельные друг другу линии (что роднит их с цилиндрическими проекциями), а меридианы – кривые, симметричные относительно среднего прямолинейного меридиана (рис. 5.14)

414
Рис. 5.14. Вид картографической сетки в псевдоцилиндрической проекции.

У псевдоконических проекций параллели – дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 5.15);

415
Рис. 5.15. Картографическая сетка в одной из псевдоконических проекций

Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 5.16.

416

Рис. 5.16. Принцип построения поликонической проекции:
а – положение конусов; б – полосы; в – развертка

Буквами S на рисунке обозначены вершины конусов. На каждый конус проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса.
Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего — прямого), а параллели — дуги эксцентрических окружностей.
В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.
После развертки конусов получают изображение этих участков в виде полос на плоскости; полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений (рис. 5.17).

417
Рис. 5.17. Картографическая сетка в одной из поликонических

Многогранные проекции – проекции, получаемые путем проектирования на поверхность многогранника (рис. 5.18), касательного или секущего шар (эллипсоид). Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические создают исключительно в многогранной проекции, и рамка каждого листа представляет собой трапецию, составленную линиями меридианов и параллелей. За это приходится "расплачиваться" – блок листов карт нельзя совместить по общим рамкам без разрывов.

418
Рис. 5.18. Схема многогранной проекции и расположение листов карт

Необходимо отметить, что в наши дни для получения картографических проекций не пользуются вспомогательными поверхностями. Никто не помещает шар в цилиндр и не надевает на него конус. Это всего лишь геометрические аналогии, позволяющие понять геометрическую суть проекции. Изыскание проекций выполняют аналитически. Компьютерное моделирование позволяет достаточно быстро рассчитать любую проекцию с заданными параметрами, а автоматические графопостроители легко вычерчивают соответствующую сетку меридианов и параллелей, а при необходимости – и карту изокол.
Существуют специальные атласы проекций, позволяющие подобрать нужную проекцию для любой территории. В последнее время созданы электронные атласы проекций, с помощью которых легко отыскать подходящую сетку, сразу оценить ее свойства, а при необходимости провести в интерактивном режиме те или иные модификации или преобразования.

5.5. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ В ЗАВИСИМОСТИ ОТ ОРИЕНТИРОВАНИЯ ВСПОМОГАТЕЛЬНОЙ КАРТОГРАФИЧЕСКОЙ ПОВЕРХНОСТИ

Нормальные проекции – плоскость проектирования касается земного шара в точке полюса или ось цилиндра (конуса) совпадает с осью вращения Земли (рис. 5.19).

419
Рис. 5.19. Нормальные (прямые) проекции

Поперечные проекции – плоскость проектирования касается экватора в какой-либо точке или ось цилиндра (конуса) совпадает с плоскостью экватора (рис. 5.20).


420
Рис. 5.20. Поперечные проекции

Косые проекции – плоскость проектирования касается земного шара в любой заданной точке (рис. 5.21).

421
Рис. 5.21. Косые проекции

Из косых и поперечных проекций наиболее часто используют косые и поперечные цилиндрические, азимутальные (перспективные) и псевдоазимутальные проекции. Поперечные азимутальные применяют для карт полушарий, косые – для территорий, имеющих округлую форму. Карты материков часто составляют в поперечных и косых азимутальных проекциях. Поперечно-цилиндрическая проекция Гаусса – Крюгера применяется для государственных топографических карт.

5.6. ВЫБОР ПРОЕКЦИЙ

На выбор проекций влияет много факторов, которые можно сгруппировать следующим образом:

Первые три группы факторов задаются изначально, четвертая – зависит от них. Если составляется карта, предназначенная для навигации, обязательно должна быть использована равноугольная цилиндрическая проекция Меркатора. Если картографируется Антарктида, то почти наверняка будет принята нормальная (полярная) азимутальная проекция и т.д.
Значимость названных факторов может быть различной: в одном случае на первое место ставят наглядность (например, для настенной школьной карты), в другом – особенности использования карты (навигация), в третьем – положение территории на земном шаре (полярная область). Возможны любые комбинации, а следовательно – и разные варианты проекций. Тем более что выбор очень велик. Но все же можно указать некоторые предпочтительные и наиболее традиционные проекции.
Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические проекции иногда дают с разрывами на океанах.
Карты полушарий всегда строят в азимутальных проекциях. Для западного и восточного полушарий естественно брать поперечные (экваториальные), для северного и южного полушарий – нормальные (полярные), а в других случаях (например, для материкового и океанического полушарий) — косые азимутальные проекции.
Карты материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего строят в равновеликих косых азимутальных проекциях, для Африки берут поперечные, а для Антарктиды – нормальные азимутальные.
Карты отдельных стран, административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных проекциях, но многое зависит от конфигурации территории и ее положения на земном шаре. Для небольших по площади районов задача выбора проекции теряет актуальность, можно использовать разные равноугольные проекции, имея в виду, что искажения площадей на малых территориях почти неощутимы.
Топографические карты Украины создают в поперечно-цилиндрической проекции Гаусса, а США и многие другие западные страны – в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UТМ). Обе проекции близки по своим свойствам; по существу та и другая являются многополостными.
Морские и аэронавигационные карты всегда даются исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения всего Мирового океана – равновеликие проекции с разрывами на материках.
В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять «математическим» факторам выбора проекции, и наоборот  – для малых территорий и крупных масштабов более существенными становятся «географические» факторы.

5.7. РАСПОЗНАВАНИЕ ПРОЕКЦИЙ

Распознать проекцию, в которой составлена карта, – значит установить ее название, определить принадлежность к тому или иному виду, классу. Это нужно для того, чтобы иметь представление о свойствах проекции, характере, распределении и величине искажений – словом, для того, чтобы знать, как пользоваться картой, чего от нее можно ожидать.
Некоторые нормальные проекции сразу распознаются по виду меридианов и параллелей. Например, легко узнаваемы нормальные цилиндрические, псевдоцилиндрические, конические, азимутальные проекции. Но даже опытный картограф не сразу распознает многие произвольные проекции, потребуются специальные измерения по карте, чтобы выявить их равноугольность, равновеликость или равнопромежуточность по одному из направлений. Для этого существуют особые приемы: сперва устанавливают форму рамки (прямоугольник, окружность, эллипс), определяют, как изображены полюсы, затем измеряют расстояния между соседними параллелями вдоль по меридиану, площади соседних клеток сетки, углы пересечения меридианов и параллелей, характер их кривизны и т.п.
Существуют специальные таблицы-определители проекций для карт мира, полушарий, материков и океанов. Проведя необходимые измерения по сетке, можно отыскать в такой таблице название проекции. Это даст представление о ее свойствах, позволит оценить возможности количественных определений по данной карте, выбрать соответствующую карту с изоколами для внесения поправок.

Видео
Виды проекций по характеру искажений

 

Вопросы для самоконтроля:

  1. Какие элементы составляют математическую основу карты?
  2. Что называют масштабом географической карты?
  3. Что называют главным масштабом карты?
  4. Что называют частным масштабом карты?
  5. Чем обусловлено отклонение частного масштаба от главного на географической карте?
  6. Как измерить расстояние между точками на морской карте?
  7. Что представляет собой эллипс искажений и для каких целей он используется?
  8. Как можно определить по эллипсу искажений наибольший и наименьший масштабы?
  9. Какие существует методы переноса поверхности земного эллипсоида на плоскость, в чем их сущность?
  10. Что называют картографической проекцией?
  11. Как классифицируют проекции по характеру искажений?
  12. Какие проекции называют равноугольными, как изобразить эллипс искажений на этих проекциях?
  13. Какие проекции называют равнопромежуточными, как изобразить эллипс искажений на этих проекциях?
  14. Какие проекции называют равновеликими, как изобразить эллипс искажений на этих проекциях?
  15. Какие проекции называют произвольными?

 

 

Яндекс.Метрика