« »

Тема 13. ГЕОГРАФИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ

13.1. ПОНЯТИЯ О ГЕОИНФОРМАЦИОННЫХ СИСТЕМАХ

В конце XX в. благодаря активной автоматизации и компьютеризации картография стала держательницей и распорядительницей огромных массивов информации о важнейших аспектах существования, взаимодействия и функционирования природы и общества. Информатизация проникла во все сферы науки и практики – от школьного образования до высокой государственной политики.
В науках о Земле на базе информационных технологий созданы географические информационные системы (ГИС) – особые системы сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информацией о необходимых объектах.
Пространственные данные (географические данные, геоданные) – данные о пространственных объектах и их наборах. Пространственные данные составляют основу информационного обеспечения геоинформационных систем. Совокупность пространственных данных, записанных (сохранённых) тем или иным образом, называется пространственной базой данных.
Одна из основных функций ГИС – создание и использование компьютерных (электронных) карт, атласов и других картографических произведений.
Геоинформационные технологии с большим успехом применяются в отраслях:

Принято различать следующие территориальные уровни ГИС: глобальные, национальные, региональные, муниципальные и локальные.
ГИС подразделяют и по проблемной ориентации (тематике). Созданы специализированные земельные информационные системы (ЗИС), кадастровые (КИС), экологические (ЭГИС), учебные, морские и многие иные системы. Одни из наиболее распространенных в географии – ГИС ресурсного типа. Они создаются на основе обширных и разнообразных по тематике информационных массивов и предназначены для инвентаризации, оценки, охраны и рационального использования ресурсов, прогноза результатов их эксплуатации.

13.2. ПОДСИСТЕМЫ ГИС

Структуру ГИС обычно представляют как набор информационных слоев (рис. 13.1). К примеру, базовый слой содержит данные о рельефе, затем следуют слои гидрографии, дорожной сети, населенных пунктов, почв, растительного покрова, распространения загрязняющих веществ и т.д. Условно эти слои можно рассматривать в виде «этажерки», на каждой полочке которой хранится карта или цифровая информация по определенной теме.

91
Рис. 13.1. Принцип расположения информационных слоев в географической информационной системе

В процессе решения поставленных задач слои анализируют по отдельности или совместно в разных комбинациях, выполняют их взаимное наложение (оверлей) и районирование, рассчитывают корреляции и т.п. Скажем, по данным о выборах можно построить слои "явка избирателей по участкам на выборах" и "результаты голосования по определенной партии". Анализируя эти слои можно сделать выводы о работе агитаторов по округам.

v
Рис. 13.2. Результаты выборов по участкам

При создании ГИС главное внимание всегда уделяют выбору географической основы и базовой карты, которая служит каркасом для последующей привязки, совмещения и координирования всех данных, поступающих в ГИС, для взаимного согласования информационных слоев и последующего анализа с применением оверлея. В зависимости от тематики и проблемной ориентации ГИС в качестве базовых могут быть избраны:

Возможны и комбинации указанных основ, например ландшафтных карт с топографическими или фотокарт с картами использования земель и т.п. В каждом конкретном случае выбор и дополнительная подготовка базовой карты (например, ее разгрузка или нанесение дополнительной информации) составляют центральную задачу этапа географо-картографического обоснования ГИС.
Сердцевину всякой ГИС составляет автоматизированная картографическая система (АКС) – комплекс приборов и программных средств, обеспечивающих создание и использование карт. АКС состоит из ряда подсистем, важнейшими из которых являются подсистемы ввода, обработки и вывода информации (рис. 13.3).
Подсистема ввода информации – это устройства для преобразования пространственной информации в цифровую форму и ввода ее в память компьютера или в базу данных. Для оцифровки применяют цифрователи (дигитайзеры) и сканеры. С помощью цифрователей на исходной карте прослеживают и обводят контуры и другие обозначения, а в память компьютера при этом поступают текущие координаты этих контуров и линий в цифровой форме. Сам процесс прослеживания оператор выполняет вручную, с чем связаны большая трудоемкость работ и возникновение погрешностей при обводе линий. Сканеры же осуществляют автоматическое считывание информации последовательно по всему полю карты, строка за строкой. Сама карта размещается на планшете или на барабане. Сканирование выполняется быстро и точно, но приходится дополнительно разделять (распознавать) оцифрованные элементы: реки, дороги, другие контуры и т.п. Качественные и количественные характеристики цифруемых объектов, а также статистические данные вводят с клавиатуры компьютера. Вся цифровая информация поступает в базы данных.

93
Рис. 13.3. Структура ГИС.

Базы данных – упорядоченные массивы данных по какой-либо теме (темам), представленные в цифровой форме, например базы данных о рельефе, населенных пунктах, базы геологической или экологической информации. Формирование баз данных, доступ и работу с ними обеспечивает система управления базами данных (СУБД), которая позволяет быстро находить требуемую информацию и проводить ее дальнейшую обработку. Если базы данных размещены на нескольких компьютерах (например, в разных учреждениях или даже в разных городах и странах), то их называют распределенными базами данных. Это удобно, так как каждая организация формирует свой массив, следит за ним и поддерживает на уровне современности. Совокупности баз данных и средств управления ими образуют банки данных. Распределенные базы и банки данных соединяют компьютерными сетями, и доступ к ним (запросы, поиск, чтение, обновление) осуществляется под единым управлением.
Подсистема обработки информации состоит из самого компьютера, системы управления и программного обеспечения. Созданы сотни разнообразных специализированных программ (пакетов программ), которые позволяют выбирать нужную проекцию, приемы генерализации и способы изображения, строить карты, совмещать их друг с другом, визуализировать и выводить на печать. Программные комплексы способны выполнять и более сложные работы: проводить анализ территории, дешифрировать снимки и классифицировать картографируемые объекты, моделировать процессы, сопоставлять, оценивать альтернативные варианты и выбирать оптимальный путь решения. А современные «интеллектуальные» программы моделируют даже некоторые процессы человеческого мышления.
Большая часть подсистем обработки информации работают в диалоговом (интерактивном) режиме, в ходе которого идет непосредственный двусторонний обмен информацией между картографом и компьютером.
Подсистема вывода (выдачи) информации – комплекс устройств для визуализации обработанной информации в картографической форме. Это экраны (дисплеи), печатающие устройства (принтеры) различной конструкции, чертежные автоматы (плоттеры) и др. С их помощью быстро выводят результаты картографирования и варианты решений в той форме, которая удобна пользователю. Это могут быть не только карты, но и тексты, графики, трехмерные модели, таблицы, однако если речь идет о пространственной информации, то чаще всего она дается в картографической форме, наиболее привычной и легко обозримой.
Все подсистемы, входящие в автоматические картографические системы, входят также и в ГИС. В состав картографической ГИС производственного назначения включают еще и подсистему издания карт, которая позволяет изготовлять печатные формы и печатать тиражи карт. Если тираж небольшой, что обычно при выполнении научных исследований, то используют настольные картографические издательские системы.
ГИС, ориентированные на работу с аэрокосмической информацией, включают специализированную подсистему обработки изображений. В этом случае программное обеспечение позволяет выполнять различные операции со снимками: проводить их коррекцию, преобразование, улучшение, автоматическое распознавание и дешифрирование, классификацию и др.
Особую подсистему в высокоразвитых ГИС может составлять база знаний, т.е. совокупность формализованных знаний, логических правил и программных средств для решения задач определенного типа (например, для проведения границ или районирования территории). Базы знаний помогают диагностировать состояние геосистем, предлагать варианты решения проблемных ситуаций, давать прогноз развития. Можно считать, что в базах знаний реализуются некоторые принципы функционирования искусственного интеллекта.

13.3. ГЕОИНФОРМАТИКА – НАУКА, ТЕХНОЛОГИЯ, ПРОИЗВОДСТВО

Геоинформатика существует в трех ипостасях как наука, техника и производство, и это достаточно типичная ситуация в условиях научно-технического прогресса, сближающего науку и производство. Это триединство является одним из факторов, сближающим картографию и геоинформатику.
Геоинформатика как научная дисциплина изучает природные и социально-экономические геосистемы посредством компьютерного моделирования на основе баз данных и баз знаний.
Вместе с картографией и другими науками о Земле геоинформатика исследует процессы и явления, происходящие в геосистемах, но пользуется для этого своими средствами и методами. Главными из них являются компьютерное моделирование и геоинформационное картографирование.
Основные цели геоинформатики как науки – это управление геосистемами в широком понимании, включая их инвентаризацию, оценку, прогнозирование, оптимизацию и т.п. Для картографии особенно важны заложенный в геоинформатике комплексный подход к изучаемым явлениям и ее проблемная ориентация. В структуре геоинформатики различают такие разделы, как теория геосистемного моделирования, методы пространственного анализа и прикладная геоинформатика.
Но с другой стороны, геоинформатика – это технология сбора, хранения, преобразования, отображения и распространения пространственно-координированных данных. ГИС-технологии обеспечивают анализ геоинформации и принятие решений.
Наконец, геоинформатика как производство (геоинформационная индустрия) – это изготовление аппаратуры, создание коммерческих программных продуктов и ГИС-оболочек, баз данных, систем управления, компьютерных систем. К этой сфере примыкают формирование ГИС-инфраструктуры и организация маркетинга.
Картография и геоинформатика взаимодействуют по многим направлениям. Они объединены организационно, поскольку государственные картографические службы и частные фирмы занимаются одновременно и геоинформационной деятельностью. Сформировалось особое направление высшего геоинформационно-картографического образования.
Единство двух отраслей науки и техники определяется следующими факторами:
♦ общегеографические и тематические карты – главный источник пространственной информации о природе, хозяйстве, социальной сфере, экологической обстановке;
♦ системы координат и разграфка, принятые в картографии, служат основой для географической локализации всех данных в ГИС;
♦ карты – основное средство интерпретации и организации данных дистанционного зондирования и любой другой информации, поступающей, обрабатываемой и хранимой в ГИС;
♦ геоинформационные технологии, используемые для изучения пространственно-временной структуры, связей и динамики геосистем, в основном опираются на методы картографического анализа и математико-картографического моделирования;
♦ картографические изображения – самая целесообразная форма представления геоинформации потребителям, а составление карт – одна из основных функций ГИС.

13.4. ГЕОИНФОРМАЦИОННОЕ КАРТОГРАФИРОВАНИЕ

Геоинформационное картографирование – это автоматизированное создание и использование карт на основе ГИС и баз картографических данных и знаний. Суть геоинформационного картографирования составляет информационно-картографическое моделирование геосистем.
Геоинформационное картографирование может быть отраслевым и комплексным, аналитическим и синтетическим. В соответствии с принятыми классификациями выделяют виды и типы картографирования (например, социально-экономическое, экологическое или инвентаризационное, оценочное геоинформационное картографирование и т.п.).
Данное направление сформировалось не вдруг и не на пустом месте. Оно интегрировало ряд отраслей картографии, подняв их на более высокий технологический уровень. Его истоки прослеживаются в комплексном, потом в синтетическом и оценочно-прогнозном картографировании. Следующим шагом стало развитие системного картографирования, при котором внимание сосредоточивается на целостном отображении геосистем и их элементов (подгеосистем), иерархии, взаимосвязей, динамики, функционирования. Это потребовало основательной опоры на математические методы и автоматизированные технологии, а отсюда был уже один шаг до создания автоматических картографических систем и ГИС. Иначе говоря, геоинформационное картографирование возникло и развивается как прямое продолжение комплексного, синтетического и далее – системного картографирования в новой геоинформационной среде.
Среди характерных черт этого вида картографирования наиболее важны следующие:
♦ высокая степень автоматизации, опора на базы цифровых картографических данных и базы географических (геологических, экологических и др.) знаний;
♦ системный подход к отображению и анализу геосистем;
♦ интерактивность картографирования, тесное сочетание методов создания и использования карт;
♦ оперативность, приближающаяся к реальному времени, в том числе с широким использованием данных дистанционного зондирования;
♦ многовариантность, допускающая разностороннюю оценку ситуаций и спектр альтернативных решений;
♦ многосредность (мультимедийность), позволяющая сочетать иконические, текстовые, звуковые отображения;
♦ применение компьютерного дизайна и новых графических изобразительных средств;
♦ создание изображений новых видов и типов (электронные карты, 3-мерные компьютерные модели и анимации и др.);
♦ преимущественно проблемно-практическая ориентация картографирования, нацеленная на обеспечение принятия решений.
Геоинформационное картографирование – программно-управляемое картографирование. Оно аккумулирует достижения дистанционного зондирования, космического картографирования, картографического метода исследования и математико-картографического моделирования.
В своем развитии геоинформационное картографирование использует опыт комплексных географических исследований и системного тематического картографирования. Благодаря этому в конце XX в. геоинформационное картографирование стало одним из магистральных направлений развития картографической науки и производства.

13.5. ОПЕРАТИВНОЕ КАРТОГРАФИРОВАНИЕ

Оперативное картографирование – одна из ветвей геоинформационного картографирования, суть его составляют создание и использование карт в реальном или близком к реальному масштабах времени с целью быстрого (своевременного) информирования пользователей и воздействия на ход процесса.
Реальный масштаб времени характеризует скорость создания – использования карт, т.е. темп, обеспечивающий немедленную обработку поступающей информации, ее картографическую визуализацию для оценки, мониторинга и контроля каких-либо процессов и явлений, изменяющихся в том же темпе.
В практических ситуациях оперативное изготовление картографических произведений и доставка их потребителям становятся важным и даже решающим условием выполнения задачи. Оперативные карты предназначены для решения широкого спектра проблем, и прежде всего для предупреждения (сигнализации) о неблагоприятных или опасных процессах, слежения за их развитием, составления рекомендаций и прогнозов, выбора вариантов контроля, стабилизации или изменения хода процесса в самых разных сферах – от экологических ситуаций до политических событий.
Следует различать оперативные карты двух типов: одни рассчитаны на долговременное последующее использование и анализ (например, карты итогов голосования избирателей), а другие – на кратковременное применение для незамедлительной оценки какой-либо ситуации (например, карты стадий созревания сельскохозяйственных посевов).
Исходными данными для оперативного картографирования служат материалы аэрокосмической съемки, непосредственные наблюдения и замеры, статистические данные, результаты опросов, переписей, референдумов, кадастровая информация. А эффективность оперативного картографирования определяется тремя факторами:

Оперативное отображение состояния и изменения явлений теснейшим образом связано с автоматизированным изготовлением динамических карт. Они позволяют отразить не только структуру, но и существо явлений и процессов, происходящих в земной коре, атмосфере, гидросфере, биосфере и, что еще более важно, в зонах их контакта и взаимодействия. Динамическое картографирование, кроме того, является самым эффективным средством визуализации результатов мониторинга.

13.6. КАРТОГРАФИЧЕСКИЕ АНИМАЦИИ

В традиционной картографии известны три способа отображения динамики явлений и процессов, их возникновения, развития, изменений во времени и перемещения в пространстве:

Геоинформационное картографирование существенно расширяет возможности отображения динамики геосистем, вводя в практику картографические анимации (мультипликации) – особые динамические последовательности карт-кадров, создающие при демонстрации эффект движения. Анимации прочно вошли в повседневную жизнь, они стали столь же привычными, как космические снимки и электронные карты. Хорошо известным примером могут служить телевизионные карты прогноза погоды, на которых видны перемещения фронтов, областей высокого и низкого давления, атмосферные осадки.
Разработано множество технологий и методик получения движущихся изображений. Созданы особые компьютерные программы, которые содержат модули, обеспечивающие самые разные варианты и комбинации картографических анимаций:

Анимации можно демонстрировать с нормальной (24 кадра в секунду), ускоренной или замедленной скоростью. Отсюда возникают совершенно новые для картографии проблемы временной генерализации, выбора изобразительных средств, изучения принципов восприятия читателями движущихся карт и т.п.
Динамические изображения добавляют традиционным статичным картам столь необходимый исследователям временной аспект. В связи с этим оправдано введение понятия масштаба времени (или временного масштаба). В определенном смысле можно говорить о медленно-, средне- и быстромасштабных изображениях. Например, одна секунда демонстрации анимационной карты соответствует (округленно) одним суткам или в одной секунде – один месяц.

13.7. ВИРТУАЛЬНОЕ КАРТОГРАФИРОВАНИЕ

Дальнейшее развитие геоинформационных технологий привело к созданию изображений, сочетающих свойства карты, перспективного снимка, блок-диаграммы и компьютерной анимации. Такие изображения получили название виртуальных. Этот термин имеет несколько смысловых оттенков: возможный, потенциальный, не существующий, но способный возникнуть при определенных условиях, временный или непродолжительно существующий, а главное – не реальный, но такой же, как реальный, неотличимый от реального. В машинной графике визуализация виртуальной реальности предполагает, прежде всего, применение эффектов трехмерности и анимации. Именно они создают иллюзию присутствия в реальном пространстве и возможности интерактивного взаимодействия с ним.
В картографии виртуальные модели понимаются как изображения реальных или мысленных объектов, формируемые и существующие в программно-управляемой среде. Как любое картографическое изображение, они имеют проекцию, масштаб и обладают генерализованностью. Сама же виртуальная реальность – это интерактивная технология, позволяющая воспроизводить реальные и (или) мысленные объекты, их связи и отношения в программно-управляемой среде.
Считается, что отказ от условных знаков, стремление придать виртуальным изображениям «натуральность», объемность, естественную окраску и освещение создает иллюзию реального существования объекта. Тем самым ускоряется процесс коммуникации, и повышается эффективность передачи пространственной информации.
Технологии создания виртуальных изображений многообразны. Обычно вначале по топографической карте, аэро- или космическому снимку создается цифровая модель, затем – трехмерное изображение местности. Его окрашивают в цвета гипсометрической шкалы либо совмещают с фотоизображением ландшафта и далее используют как реальную модель.
Одна из наиболее распространенных виртуальных операций – «облет» полученного изображения. Специальные программные модули обеспечивают управление полетом: движение по избранному направлению, развороты, изменение скорости, показ перспективы. С помощью клавиатуры и джойстика (манипулятора в форме рукоятки с кнопками) можно выдерживать полет на заданной высоте, с установленной скоростью, над точками с заранее избранными координатами. Кроме того, предусмотрены возможности выбора состояния неба (облачности), тумана, условий освещения местности, высоты Солнца, времени дня, эффектов дождя или снегопада и т.п. Модули редактирования позволяют дополнительно наносить новое тематическое содержание, менять текстуру местности, использовать цветные сетки и подложки, размещать надписи, выбирая размер и цвет шрифтов, добавлять тексты и даже звуки.
Крупномасштабные тематические виртуальные изображения дают довольно подробное представление о рельефе и ландшафте, геологическом строении, водных объектах, растительном покрове, городах, путях сообщения и т.п. Возможность интеграции разной тематической информации в единой модели – одно из главных достоинств виртуального изображения. Пролетая и «зависая» над горами, можно детально рассмотреть террасированность их склонов, провести морфометрические измерения, определить характер эрозионных и оползневых процессов, а двигаясь над городскими территориями, – оценить особенности застройки и распределения зеленых массивов, спроектировать размещение новых зданий и транспортных магистралей.
При виртуальном моделировании часто используют многоуровневую аппроксимацию. По одной и той же цифровой модели рельефа, ландшафта или растительного покрова выполняют несколько аппроксимаций с разными уровнями детальности. Это позволяет не ограничиваться увеличением или уменьшением масштаба, а переходить при необходимости на иной уровень детальности. Так возникает своеобразная мультиуровневая генерализация.
Наибольшее применение виртуальные изображения имеют при решении таких практических задач, как мониторинг районов природного риска, строительство зданий и автострад, прокладка трубопроводов, оценка загрязнения среды и распространения шумов от аэропортов и т.п. Возможно использование аналогичных технологий в научных и учебных целях, например для создания средне- и мелкомасштабных виртуальных изображений, в том числе глобусов. На глобусах изображают, скажем, природную зональность земного шара, ход климатических процессов, сезонные изменения растительного покрова и ландшафта, миграцию населения, движение транспортных потоков и т.д. Сюжеты виртуальных тематических карт столь же разнообразны, как и в традиционном картографировании.

13.8. ЭЛЕКТРОННЫЕ АТЛАСЫ

Создание капитальных атласов растягивается, как известно, на долгие сроки, и главной проблемой становится их устаревание, нередко еще в процессе подготовки. Электронные атласы – это удачная альтернатива бумажным. Они позволяют значительно сократить сроки составления, использовать в качестве носителей компакт-диски, применить анимации и мультимедийные средства. Такие атласы содержат карты высокого качества, имеют дружественный интерфейс и обычно снабжены хорошими справочно-поисковыми системами.
Существует несколько типов электронных атласов:

Все они могут входить в содержание разных карт атласа, скажем, базовый слой «геологическое строение» можно использовать не только для собственно геологической карты, но с той или иной генерализацией – для карт полезных ископаемых, гидрогеологической, инженерно-геологической, геоэкологической и др. Комбинирование слоев существенно упрощает трудоемкие процессы составления и взаимного согласования карт.
В большинстве стран созданы национальные электронные атласы. Как правило, они базируются на многотомных бумажных атласах. Однако электронные атласы не всегда повторяют свои бумажные прототипы именно в силу текущего обновления карт, появления новых сюжетов и даже частичного изменения структуры.
Впервые в истории украинского государства создан Национальный атлас Украины – картографическое произведение энциклопедического уровня. В Атласе отражен весь спектр знаний об современной территории Украины. Электронная версия сочетает в себе традиционные картографические подходы и современные геоинформационные технологии, которые призваны отражать всестороннюю информацию об истории, природных, социальных и экологических особенностях Украины начала XXI века.
Электронная версия Национального атласа Украины рассчитана на широкий круг пользователей. Массу полезной информации для себя найдут все: от школьников и студентов до специалистов-географов. Возможности работы с электронной версией зависят только от навыков и заинтересованности пользователей.
Атлас содержит 875 уникальных карт, которые созданы на базе новейших знаний и статистической информации, а также тексты, графики и фотографии. Он органично объединяет шесть тематических блоков.
Общая характеристика. Информация о геополитическое положение Украины, ее физико-географические условия и административное устройство, место в европейском и мировом природно-ресурсном, экономическом и демографическом потенциале.
История. Информация об основных этапах истории украинского народа и государства.
Природные условия и природные ресурсы. Информация об особенностях и качества природных условий страны, наличие и количество природных ресурсов.
Население. Информация о численности, размещении и движении населения, структура расселения, национальный состав, особенности демографического, социально-экономического и гуманитарного развития.
Экономика. Информация, отражающая уровень развития производительных сил Украины, структуру, специализацию и территориальную организацию хозяйства и общие тенденции трансформации экономики.
Экологическое состояние окружающей среды. Карты отражают комплексную оценку состояния и уровня загрязнения окружающей среды и отдельных компонентов природы, систему мониторинга, природно-заповедный фонд и другие охраняемые территории.
Электронная версия Национального атласа Украины – это уникальное собрание на одном диске большой информации об Украине, была подготовлена под руководством ведущих специалистов в своей области. Удобный интерфейс и простота в использовании являются залогом того, что вы легко найдете необходимую информацию.

94

Рис. 13.4. Бумажная и электронная версии Национального атласа Украины

Вопросы и задания для самоконтроля

  1. Дайте определение географическим информационным системам, пространственным данным, пространственной базе данных.
  2. В каких отраслях, и для каких целей применяют геоинформационные технологии?
  3. Как классифицируют ГИС по территориальному уровню?
  4. Как подразделяют ГИС по проблемной ориентации (тематике)?
  5. Какие элементы включены в структуру ГИС?
  6. Что представляет собой геоинформатика?
  7. Как взаимодействуют картография и геоинформатика?
  8. Что представляет собой геоинформационное картографирование?
  9. Что представляет собой оперативное картографирование?
  10. Приведите примеры динамических карт.
  11. Какие способы отображения динамики явлений и процессов применяют в традиционной картографии?
  12. Какие способы отображения динамики явлений и процессов применяют в геоинформационном картографировании?
  13. Что представляет собой виртуальное картографирование?
  14. Что представляет собой электронные атласы?

 

 

Яндекс.Метрика