« »

Тема 6. МАСШТАБЫ ТОПОГРАФИЧЕСКИХ И ЛЕСНЫХ КАРТ

ВВЕДЕНИЕ

Топографическая карта представляет собой уменьшенное обобщенное изображение местности, показывающее элементы с помощью системы условных знаков.
В соответствии с предъявляемыми требованиями топографические карты отличаются высокой геометрической точностью и географическим соответствием. Это обеспечивается их масштабом, геодезической основой, картографическими проекциями и системой условных знаков.
Геометрические свойства картографического изображения: размеры и форма участков, занятых географическими объектами, расстояния между отдельными пунктами, направления от одного к другому – определяются его математической основой. Математическая основа карт включает в качестве составных частей масштаб, геодезическую основу, и картографическую проекцию.
Что представляет собой масштаб карты, какие виды масштабов бывают, как построить графический масштаб и как пользоваться масштабами рассмотрим на лекции.

6.1. МАСШТАБЫ ТОПОГРАФИЧЕСКИХ КАРТ

При составлении карт и планов горизонтальные проекции отрезков изображают на бумаге в уменьшенном виде. Степень такого уменьшения характеризуется масштабом.
Масштаб карты (плана) – отношение длины линии на карте (плане) к длине горизонтального проложения соответствующей линии местности

 

или

m = lК : dM

Масштаб изображения небольших участков на всей топографической карте практически постоянен.При небольших углах наклона физической поверхности (на равнине) длина горизонтальной проекции линии очень мало отличается от длины наклонной линии. В этих случаях можно считать масштабом длины отношение длины линии на карте к длине соответствующей линии на местности.

Масштаб указывается на картах в разных вариантах

 или

1 : М

Знаменатель М численного масштаба показывает степень уменьшения длин линий на карте (плане) по отношению к длинам соответствующих линий на местности. Сравнивая между собой численные масштабы, более крупным называют тот, у которого знаменатель меньше.
Используя численный масштаб карты (плана), можно определить горизонтальное проложение линии на местности


Пример.
Масштаб карты 1:50 000. Длина отрезка на карте = 4,0 см. Определить горизонтальное проложение линии на местности.

Решение.
Умножив величину отрезка на карте в сантиметрах на знаменатель численного масштаба получаем горизонтальное проложение в сантиметрах.
d = 4,0 см × 50 000 = 200 000 см, или 2 000 м, или 2 км.

Обратите внимание на то, что численный масштаб есть величина отвлеченная, не имеющая конкретных единиц измерения. Если числитель дроби выразить в сантиметрах, то и знаменатель будет иметь те же единицы измерения, т.е. сантиметры.

Например, масштаб 1:25 000 означает, что 1 сантиметру карты соответствует 25 000 сантиметров местности, или 1 дюйм карты соответствует 25 000 дюймов местности.

Для удовлетворения потребностей хозяйства, науки и обороны страны необходимы карты различных масштабов. Для государственных топографических карт, лесоустроительных планшетов, планов лесничеств и лесонасаждений определены стандартные масштабы – масштабный ряд(табл. 6.1, 6.2).


Масштабы топографических карт


Таблица 6.1.

Численный масштаб

Название карты

1 см карты соответствует
на местности расстоянию

1 см2 карты соответствует
на местности площади

1:5 000

Пятитысячная

50 м

0,25 гектар

1:10 000

Десятитысячная

100 м

1 гектар

1:25 000

Двадцатипятитысячная

250 м

6,25 гектар

1:50 000

Пятидесятитысячная

500 м

25 гектар

1:100 000

Стотысячная

1 км

1 км2

1:200 000

Двухсоттысячная

2 км

4 км2

1:500 000

Пятисоттысячная

5 км

25 км2

1:1 000 000

Миллионная

10 км

100 км2

Ранее этот ряд включал масштабы 1 : 300 000, и 1 : 2 000.

Масштабный ряд лесоустроительных планшетов, планов лесничеств и лесонасаждений

Таблица 6.2

Разряд лесоустройства

Масштабы

планшетов

планов лесничеств, планов лесонасаждений лесничеств, лесохозяйственных (мастерских участков) и обходов

I – II

1:10 000

1:20 000

III

1:25 000

1:50 000

 

Именованным масштабом называют словесное выражение численного масштаба. Под численным масштабом на топографической карте имеется надпись поясняющая, сколько метров или километров на местности соответствует одному сантиметру карты.

Например, на карте под численным масштабом 1:50 000 записано: «в 1 сантиметре 500 метров». Цифра 500 в данном примере есть величина именованного масштаба.
Используя именованный масштаб карты, можно определить горизонтальное проложение линии на местности. Для этого необходимо величину отрезка, измеренную на карте в сантиметрах, умножить на величину именованного масштаба.

Пример. Именованный масштаб карты – «в 1 сантиметре 2 километра». Длина отрезка на карте = 6,3 см. Определить горизонтальное проложение линии на местности.
Решение. Умножив величину отрезка измеренного на карте в сантиметрах на величину именованного масштаба, получаем горизонтальное проложение в километрах на местности.
d = 6,3 см × 2 = 12,6 км

Чтобы избежать математических вычислений и ускорить работу на карте, пользуются графическими масштабами. Таких масштабов два: линейный и поперечный. Для построения линейного масштаба выбирают исходный отрезок, удобный для данного масштаба. Этот исходный отрезок (а) называют основанием масштаба (рис. 6.1).



Рис. 6.1. Линейный масштаб. Измеряемый отрезок на местности
будет CD = ED + CE = 1000 м + 200 м =1200 м.

Основание откладывают на прямой линии необходимое число раз, крайнее левое основание делят на части (отрезок b), которые будут наименьшими делениями линейного масштаба. Расстояние на местности, которое соответствует наименьшему делению линейного масштаба, называют точностью линейного масштаба.

Порядок пользования линейным масштабом:

6.2. ПОПЕРЕЧНЫЙ МАСШТАБ

Для более точных измерений пользуются поперечным масштабом (рис. 6.2, б).



Рис 6.2. Поперечный масштаб. Измеренное расстояние
PK = TK + PS + ST = 100 +10 + 7 = 117 м.

Для его построения на отрезке прямой линии откладывают несколько оснований масштаба (a). Обычно длина основания составляет 2 см или 1 см. В полученных точках устанавливают перпендикуляры к линии АB и проводят через них десять параллельных линий через равные промежутки. Крайнее левое основание сверху и снизу делят на 10 равных отрезков и соединяют их косыми линиями. Нулевую точку нижнего основания соединяют с первой точкой С верхнего основания и так далее. Получают ряд параллельных наклонных линий, которые называют трансверсалями.
Наименьшее деление поперечного масштаба равно отрезку C1D1, (рис. 6. 2, а). На такую длину отличается соседний параллельно расположенный отрезок при движении вверх по трансверсали и по вертикальной линии .
Поперечный масштаб с основанием 2 см, называют нормальным. Если основание поперечного масштаба разделено на десять частей, то его называют сотенным. В сотенном масштабе цена наименьшего деления равна одной сотой доле основания.
Поперечный масштаб гравируют на металлических линейках, которые называют масштабными.

Порядок пользования поперечным масштабом:

Точность измерения длины линии с помощью поперечного масштаба оценивается половиной цены его наименьшего деления.

6.3. ПЕРЕХОДНЫЙ ЛИНЕЙНЫЙ МАСШТАБ

Иногда в практике приходится пользоваться картой или аэроснимком, масштаб которых не является стандартным. Например, 1:17 500, т.е. 1 см на карте соответствуют 175 м на местности. Если построить линейный масштаб с основанием 2 см, то наименьшее деление линейного масштаба при этом будет 35 м. Оцифровка такого масштаба вызывает трудности при производстве практических работ.
Чтобы упростить определение расстояний по топографической карте, поступают следующим образом. Основание линейного масштаба принимают не 2 см, а рассчитывают так, чтобы оно соответствовало круглом числу метров – 100, 200, и т.д..

Пример. Требуется рассчитать длину основания соответствующего 400 м для карты масштаба 1:17 500 (в одном сантиметре 175 метров).
Чтобы определить, какие размеры на карте масштаба 1:17 500 будет иметь отрезок длиной 400 м, составляем пропорции:
на местности             на плане
175 м                                              1 см
400 м                                              Х см
Х см = 400 м× 1 см / 175 м = 2,29 см.

Решив пропорцию, делаем вывод: основание переходного масштаба в сантиметрах равно величине отрезка на местности в метрах деленное на величину именованного масштаба в метрах. Длина основания в нашем случае
а = 400 / 175 = 2,29 см.

Если теперь построить поперечный масштаб с длиной основания а = 2,29 см, то одно деление левого основания будет соответствовать 40 м (рис. 6.3).


Рис. 6.3. Переходный линейный масштаб.
Измеренное расстояние АС = ВС + АВ = 800 +160 = 960 м.

Для более точных измерений на картах и планах строят поперечный переходный масштаб.

6.4. МАСШТАБ ШАГОВ (ЛИНЕЙНЫЙ МАСШТАБ ШАГОВ) 

Используют этот масштаб для определения расстояний, измеренных шагами во время глазомерной съемки. Принцип построения и использования масштаба шагов подобен переходному масштабу. Основание масштаба шагов рассчитывают так, чтобы оно соответствовало круглому числу шагов (пар, троек) – 10, 50, 100 , 500.
Для расчета величины основания масштаба шагов необходимо определить масштаб съемки и рассчитать среднюю длину шага Шср.
Среднюю длину шага (пары шагов) рассчитывают по известному расстоянию, пройденному в прямом и обратном направлениях. Разделив известное расстояние на количество пройденных шагов, получают среднюю длину одного шага. При наклоне земной поверхности количество пройденных шагов в прямом и обратном направлениях будет разное. При движении в сторону повышения рельефа шаг будет короче, а в обратную сторону – длиннее.
Пример. Известное расстояние 100 м измерено шагами. В прямом направлении пройдено 137 шагов, а в обратном – 139 шагов. Рассчитать среднюю длину одного шага.
Решение. Всего пройдено: Σ м = 100 м + 100 м = 200 м. Сумма шагов составляет: Σ ш = 137 ш + 139 ш = 276 ш. Средняя длина одного шага составляет:

Шср = 200 / 276 = 0,72 м.

Удобно работать с линейным масштабом, когда масштабная линия размечена через 1 – 3 см, а деления подписаны круглым числом (10, 20, 50, 100). Очевидно, величина одного шага 0,72 м в любом масштабе будет иметь крайне малые значения. Для масштаба 1:2 000 отрезок на плане будет составлять 0,72 / 2 000 = 0,00036 м или 0,036 см. Десять шагов, в соответствующем масштабе, будут выражены отрезком 0,36 см. Наиболее удобным основанием для данных условий, по мнению автора, будет величина 50 шагов: 0,036 × 50 = 1,8 см.
Для тех, кто считает шаги парами, удобным основанием будет 20 пар шагов (40 шагов) 0,036 × 40 = 1,44 см.
Длину основания масштаба шагов можно также вычислить из пропорций или по формуле
а = (Шср × КШ) / М
где:         Шср – средняя величина одного шага в сантиметрах,
КШ – количество шагов в основании масштаба,
М – знаменатель масштаба.
Длина основания для 50 шагов в масштабе 1:2 000 с длиной одного шага равным 72 см будет составлять:
а = 72 × 50 / 2000 = 1,8 см.
Чтобы построить масштаб шагов для приведенного выше примера необходимо горизонтальную линию разделить на отрезки равные 1,8 см, а левое основание разделить на 5 или 10 равных частей.


Рис. 6.4. Масштаб шагов.
Измеренное расстояние АС = ВС + АВ = 100 + 20 = 120 ш.

6.5. ТОЧНОСТЬ МАСШТАБА 

Точность масштаба (предельная точность масштаба) – это отрезок горизонтального проложения линии, соответствующий 0,1 мм на плане. Значение 0,1 мм для определения точности масштаба принято из-за того, что это минимальный отрезок, который человек может различить невооруженным глазом.
Например, для масштаба 1:10 000 точность масштаба будет равна 1 м. В этом масштабе 1 см на плане соответствует 10 000 см (100 м) на местности, 1 мм – 1 000 см (10 м), 0,1 мм – 100 см (1 м). Из приведенного примера следует, что если знаменатель численного масштаба разделить на 10 000, то получим предельную точность масштаба в метрах.
Например, для численного масштаба 1:5 000 предельная точность масштаба будет 5 000 / 10 000 = 0,5 м.

Точность масштаба позволяет решать две важные задачи:

Практически принимается, что длина отрезка на плане или карте может быть оценена с точностью 0,2 мм. Горизонтальное расстояние на местности, соответствующее в данном масштабе 0,2 мм (0,02 см) на плане, называется графической точностью масштаба. Графическая точность определения расстояний на плане или карте может быть достигнута только при использовании поперечного масштаба.
Следует иметь в виду, что при измерениях на карте взаимного положения контуров точность определяется не графической точностью, а точностью самой карты, где ошибки могут составлять в среднем 0,5 мм вследствие влияния других, кроме графических, погрешностей.
Если учесть погрешность самой карты и погрешность измерений на карте, то можно сделать вывод, что графическая точность определения расстояний на карте в 5 – 7 хуже предельной точности масштаба, т. е. составляет 0,5 – 0,7 мм в масштабе карты.

6.6. ОПРЕДЕЛЕНИЕ НЕИЗВЕСТНОГО МАСШТАБА КАРТЫ 

В тех случаях, когда по какой-либо причине масштаб на карте отсутствует (например, обрезан при склейке), он может быть определен одним из следующих способов.

Например, координатные линии обозначены числами 28, 30, 32 и т. д. (по западной рамке) и 06, 08, 10 (по южной рамке). Ясно, что линии проведены через 2 км. Расстояние на карте между соседними линиями равно 2 см. Отсюда следует, что 2 см на карте соответствуют 2 км на местности, а 1 см на карте – 1 км на местности (именованный масштаб). Значит, масштаб карты будет 1:100 000 (в 1 сантиметре 1 километр).

Лист карты масштаба 1:1 000 000 (миллионной) обозначается одной из букв латинского алфавита и одним из чисел от 1 до 60. Система обозначений карт более крупных масштабов имеет в своей основе номенклатуру листов миллионной карты и может быть представлена следующей схемой:

1:1 000 000 –                N-37
1:500 000              –       N-37-Б
1:200 000              –       N-37-X
1:100 000              –       N-37-117
1:50 000                –       N-37-117-А
1:25 000                –       N-37-117-А-г

В зависимости от местоположения листа карты, буквы и числа, составляющие его номенклатуру, будут различны, но порядок и количество букв и чисел в номенклатуре листа карты данного масштаба будут всегда одинаковы.
Таким образом, если карта имеет номенклатуру М-35-96, то, сравнив ее с приведенной схемой, можно сразу сказать, что масштаб этой карты будет 1:100 000.
Подробнее о номенклатуре карт см. Главу 8.

Например, известно, что расстояние от н.п. Кувечино до оз. Глубокое 5 км. Измерив это расстояние на карте, получили 4.8 см. Тогда
5000 м / 4,8 см = 1042 м в одном сантиметре.
Карты в масштабе 1:104 200 не издаются, поэтому производим округление. После округления будем иметь: 1 см карты соответствует 1 000 м местности, т. е. масштаб карты 1:100 000.
Если на карте имеется дорога с километровыми столбами, то масштаб удобнее всего определять, по расстоянию между ними.

Одной минуте дуги меридиана (по восточной или западной рамке) соответствует на местности расстояние 1852 м (морская миля). Зная это, можно определить масштаб карты так же, как и по известному расстоянию между двумя объектами местности.
Например, минутный отрезок по меридиану на карте равен 1,8 см. Следовательно, в 1 см на карте будет 1852 : 1,8 = 1 030 м. Произведя округление, получаем масштаб карты 1:100 000.
В наших вычислениях получены приближенные значения масштабов. Это произошло в силу приближенности взятых расстояний и неточности их измерения на карте.

6.7. ОСОБЕННОСТИ МАСШТАБОВ ГЕОГРАФИЧЕСКИХ КАРТ

При переходе от кривой поверхности Земли к плоскости, всегда неизбежны разрывы, требующие равномерного растяжения, или перекрытия, требующие равномерного сжатия. Поэтому на любой географической карте, охватывающей сколько-нибудь значительную часть земной поверхности, масштаб, как правило, меняется с переменой места и с переменой направления.
По какой-нибудь линии, пересекающей меридианы и параллели,масштаб будет непрерывно меняться с переходом от одной точки линии к другой, так как разные точки такой линии попадают в области различных растяжений. Если взять отношение длины линии на картек горизонтальной проекции соответствующей линии на местности, то получится какой-то средний масштаб для всей этой линии, так как в разных ее точках масштаб различный. На концах этой линиимасштаб будет отличаться от среднего масштаба больше, чем во всех остальных ее точках. Но если взять линию короче, то средний масштаб будет уже меньше отличаться от масштабов на концах линии и тем более от масштабов в других ее точках. Чем меньше брать отрезок, тем ближе средний масштаб будет к масштабам на концах отрезка и к масштабам в остальных его точках. Если непрерывно уменьшать длину отрезка, он все больше будет приближаться к бесконечно малой величине, под которой понимают величину, меньшую любой сколь-угодно малой заранее заданной величины. Только для отрезка бесконечно малой величины средний масштаб можно считать масштабом для любой его точки.
Таким образом, с учетом всех особенностей карты определение ее масштаба будет иметь следующий вид: масштабом в данной точке географической карты называется отношение бесконечно-малого, отрезка, взятого из данной точки по данному направлению, к горизонтальной проекции соответствующего ему отрезка на местности. В этом определении учтено и влияние рельефа земной поверхности и влияние кривизны Земли в целом.

Задания и вопросы для самоконтроля
  1. Какие элементы включает математическая основа карт?
  2. Раскройте понятия: «масштаб», «горизонтальное проложение», «численный масштаб», «линейный масштаб», «точность масштаба», «основания масштаба».
  3. Что представляет собой именованный масштаб карты и как им пользоваться?
  4. Что представляет собой поперечный масштаб карты, для какой цели он предназначен?
  5. Какой поперечный масштаб карты считают нормальным?
  6. Какие масштабы топографических карт и лесоустроительных планшетов применяют в Украине?
  7. Что представляет собой переходный масштаб карты?
  8. Как рассчитывают основание переходного масштаба?
  9. Как рассчитать масштаб шагов?
  10. Как подобрать масштаб для размещения плана на листе определенных размеров?

 

 

Яндекс.Метрика