« »

Тема 4. ЗОНАЛЬНАЯ СИСТЕМА ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА

4.1. РАВНОУГОЛЬНАЯ ПОПЕРЕЧНО-ЦИЛИНДРИЧЕСКАЯ ПРОЕКЦИЯ ГАУССА

Для уменьшения неизбежных искажений, возникающих при изображении значительных территорий на плоскости, прибегают к картографированию территорий по частям. При создании топографических карт (кроме карты в масштабе 1 : 1 000 000) в Украине и ряде других стран применяется равноугольная поперечная цилиндрическая проекция Гаусса-Крюгера.

Карл Фридрих (1777-1855) Гаусс в 1825 г. разработал теорию отображения поверхности эллипсоида вращения на плоскости с сохранением подобия в бесконечно малых частях. В 1912 г. А. Крюгер вывел рабочие формулы этой проекции.

Образуется проекция перенесением поверхности эллипсоида на боковую поверхность эллиптического цилиндра, ось которого перпендикулярна оси вращения Земли.

 

Рис. 4.1. Проекция Гаусса

Следовательно, проекция Гаусса составляется с учетом сжатия Земли. На один цилиндр переносится узкая полоса земной поверхности, занимающая по долготе 6°
Цилиндр касается глобуса по среднему меридиану зоны. Каждая зона соответствует колонке листов карты масштаба 1 : 1 000 000 в международной разграфке, т.е. каждая зона ограничивается меридианами, кратными 6° долготы. Зоны нумеруются от Гринвичского меридиана на восток. Первая зона расположена между меридианами 0 и 6°. Всего зон  – 60.
Поверхность глобуса на боковую поверхность цилиндра переносится с сохранением равенства углов на местности и на карте. Следовательно, проекция Гаусса равноугольна. Искажения длин будут возрастать по мере удаления от экватора и меридиана касания.

В каждой зоне осевой меридиан (как меридиан касания) изображается прямой линией в натуральную величину. Остальные меридианы зоны изображаются кривыми линиями, причем кривизна их увеличивается по мере удаления от осевого меридиана.
На глобусе все меридианы имеют одинаковую длину. Следовательно, все меридианы в зоне, кроме среднего, вытянуты по сравнению с соответствующими меридианами на глобусе. Экватор изображается прямой линией, а остальные параллели — кривыми. Все параллели, в том числе и экватор, растянуты пропорционально растяжению меридианов.

 

Рис. 4.2. Схематическое изображение зоны Гаусса на плоскости.

В проекции Гаусса максимальные искажения длин на экваторе на границе каждой зоны равны 0,137% (137 м на 100 км расстояния).
При решении многих задач геодезии такими искажениями пренебрегают и проекцию считают не только равноугольной, но и равнопромежуточной, и равновеликой, т. е. практически отсутствуют искажения углов, расстояний и площадей.  Карты этой проекции принимают за план.
Каждая зона Гаусса по меридианам и параллелям делится на отдельные листы карт. Рамками листов карт являются меридианы и параллели.
В проекции Гаусса составляются топографические карты масштаба 1 : 500 000 и крупнее.
На картах масштаба 1 : 500 000 нанесена сетка геодезических координат, а на рамках этой карты даны выходы километровой сетки.
На картах масштаба 1 : 200 000 и крупнее нанесена километровая сетка системы прямоугольных координат Гаусса.

4.2. СИСТЕМА ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА

На топографических картах масштаба 1 : 500 000 и крупнее кроме геодезической сетки наносится прямоугольная координатная сетка. Приняв осевой (средний) меридиан в каждой зоне за ось X (абсцисс), а экватор — за ось У (ординат), а их пересечение за начало координат, получим систему плоских прямоугольных координат Гаусса для данной зоны. В топографии и геодезии ориентирование производится по северу со счетом углов по ходу часовой стрелки. Поэтому для сохранения знаков тригонометрических функций положение осей координат в зоне Гаусса повернуто на 90° относительно осей, принятых в декартовой системе прямоугольных координат. За положительное направление осей приняты: для оси X — направление на север, для оси Y — на восток. Положение точки А в координатной зоне определяется ее расстоянием хА и yA от осей координат. На территории Украины все абсциссы (расстояния от экватора) положительны. Что касается ординат, то они в каждой зоне могли бы быть как положительными, так и отрицательными. Для удобства работы с картами условились значение ординаты Y осевого меридиана каждой зоны принимать равным 500 км, т. е. начало координат как бы вынесли к западу за пределы зоны.


 

Рис. 4.3. Система плоских прямоугольный координат Гаусса.

Поскольку в каждой зоне числовые значения ординат повторяются, то для того, чтобы по координатам точки можно было определить, к какой зоне она относится, к значению ординаты Y слева приписывается номер зоны.
Например, координаты точки х = 6 346 650 м,  у = 4 522 800 м означают, что точка расположена к северу от экватора на расстоянии 6 346 650 м и к востоку от осевого меридиана 4-й зоны на расстоянии 22 800 м (522 800 м – 500 000 м = 22 800 м).
Другой пример. Координаты х = 5 862 300 м, у = 15 323 500 м. Это означает, что точка расположена в 5 862 300 м к северу от экватора и в 176 500 м к западу от осевого меридиана 15-й зоны (500 000 м — 323 500 м = 176 500 м).
Для того, чтобы значительно упростить определение прямоугольных координат, на плоскости (на карте) параллельно координатным осям (осевому меридиану и экватору) проводят прямые линии через целое число километров, поэтому прямоугольную координатную сетку часто называют километровой, а ее линии — километровыми.
Все линии километровой сетки на картах подписывают цифрами, причем линии, ближайшие к углам рамки листа карты, подписывают полным числом километров, остальные сокращенно – только последними двумя цифрами, подразумевая остальные цифры. Таким образом, подпись 6081 сверху горизонтальной километровой линии означает, что она проходит в 6081 км к северу от экватора, а подпись 4322 возле расположенной справа вертикальной километровой линии означает, что эта линия находится в 4-й зоне и проходит в 178 км западнее осевого меридиана зоны (500 км  – 322 км  = 178 км).
С помощью километровой сетки можно быстро находить координаты объектов, наносить точки по координатам, указывать местоположение объектов на карте. Прямоугольные координаты точки, через которую на карте проходят линии километровой сетки получают сразу, прочитав оцифровку координатных линий на рамках карты.


           Рис. 4.3. Оцифровка линий прямоугольной координатной сетки.

Координаты точек, лежащих внутри клеток сетки, определяют по координатам ближайших к точке линий сетки и приращению координат точек относительно этих линий. Приращения координат Δх и Δу измеряют с помощью циркуля-измерителя и линейного масштаба карты, суммируют с координатами километровых линий.


хА = 6 136 000           хВ = 613328
уА = 7 316 000          уВ = 7313450

Рис. 4.5. Положение и оцифровка линий прямоугольной координатной сетки на листе карты масштаба 1 : 100 000 и определение прямоугольных координат точек

Приращения координат могут быть измерены с помощью координатомера — небольшого угольника с двумя перпендикулярными сторонами. По внутренним ребрам линеек нанесены шкалы, длины которых равны длине стороны координатных клеток карты данного масштаба. Горизонтальная шкала совмещается с нижней линией квадрата (в котором находится точка), а вертикальная шкала должна проходить через данную точку. По шкалам определяют расстояния от точки до километровых линий (рис. 6.3).


хА  =  6135 350                уА = 5577 701  

Рис. 4.6. Измерение прямоугольных координат точек с помощью
координатомера

Чтобы нанести на карту точку по заданным прямоугольным координатам, поступают следующим образом: по значению абсциссы x, принимая во внимание только целое число километров, находят горизонтальную координатную линию, к северу от которой будет находиться точка. По значению ординаты y аналогичным образом определяют вертикальную координатную линию, к востоку от которой будет расположена искомая точка, и находят нужный квадрат. Откладывают измерителем по линейному масштабу оставшиеся доли километров (приращения координат): по обеим горизонтальным сторонам квадрата к востоку — приращение ординаты Δу, а по обеим вертикальным линиям к северу — приращение абсциссы Δх. Через полученные точки проводят вертикальную и горизонтальную прямые, в точке пересечения которых находится заданная точка.

Для быстрого указания местоположения объекта на данном листе карты используют сокращенные координаты юго-западного угла соответствующего квадрата километровой сетки. От обозначений обеих километровых линий берут две последние цифры, напечатанные крупным шрифтом, и записывают их так, чтобы две первые цифры относились к южной стороне, а две последние — к западной стороне квадрата. Например, на рисунке  4.3 г. Крута находится в квадрате 8020, а населенный пункт Бандурка — в квадрате 8022.

Дополнительная километровая сетка наносится на границе соседних зон. Так как вертикальные километровые линии сетки параллельны своему осевому меридиану зоны, а осевые меридианы соседних зон между собой не параллельны, то при склейке двух листов карты, находящихся на стыке двух зон, вертикальные километровые линии обеих сеток будут расположены под некоторым углом друг к другу. При определении координат точек, расположенных в двух смежных зонах, необходимо координаты объектов одной зоны перевычислять в другую зону. Это трудоемкая работа, требующая наличия специальных таблиц и вычислительной техники.


Рис. 4.7. Взаимное расположение километровых линий сети смежных зон (а) и дополнительная координатная сетка (б)

Чтобы устранить это неудобство, в каждой зоне на всех листах карт, расположенных в пределах 2° к востоку и к западу от границы зоны, наносят кроме километровой сетки своей зоны также выводы километровой сетки соседней (западной или восточной) зоны в виде черточек за внешней рамкой. Подписи дополнительной сети делаются с наружной стороны внешней рамки.
Наличие дополнительной сетки на карте позволяет графически перевычислять координаты объектов (целей) одной зоны в другую зону. Чтобы построить на карте дополнительную сетку, необходимо соединить прямой линией выходы дополнительной координатной сетки с одинаковыми значениями по восточной и западной рамкам, а также по южной и северной рамкам.

4.3. ОПРЕДЕЛЕНИЕ ГЕОГРАФИЧЕСКИХ КООРДИНАТ ТОЧЕК,
ЗАДАННЫХ НА КАРТЕ

Каждый лист карт масштаба 1 : 1 000 000 и крупнее ограничен меридианами и параллелями. Значения географических координат подписываются у углов рамки листа карты. Кроме того, вдоль сторон рамки показываются (в масштабе карты) изображения дуг меридианов и параллелей, соответствующие определенному числу минут широты и долготы.


Рис. 4.8. Оформление рамки листа топографической карты.

Географические координаты углов внутренней рамки листа (северо-восточного, юго-восточного, юго-западного, северо-западного) подписаны на карте.
Рамка имеет деления на отрезки, соответствующие одной минуте широты (на западной и восточной рамках) и одной минуте долготы (на северной и южной рамках). Минутные отрезки представлены на карте в виде длинных пунктиров.
Для определения по карте географических координат точки проводят ближайшую к ней с юга параллель и ближайший с запада меридиан. Искомая широта будет складываться из широты проведенной параллели и приращения широты точки относительно этой параллели. Аналогично можно получить и долготу точки. Приращения широты и долготы обычно определяют по секундным отметкам, нанесенных рядом с минутными делениями или методом интерполяции.
     Чтобы определить приращения координат методом интерполяции необходимо измерить на карте длину одной минуты широты и долготы, а также расстояние от точки до ближайшей с юга параллели и от точки до ближайшего с запада меридиана. По этим данным составляются пропорции и определяются приращения координат.
Например:
На карте масштаба 1 : 25 000 длина минутного штриха по долготе равна 42 мм. Расстояние от точки до ближайшего западного меридиана равно 20 мм. Найти приращение долготы в секундах.
Составляем пропорцию: 

60 сек  соответствует  43 мм
х сек соответствует  20 мм
х = (60×20):43 = 27,9 ≈ 28 сек

При определении географических координат точек по картам масштабов 1 : 500 000 и 1 : 1 000 000 применяют специальную палетку. Она представляет собой вычерченную на прозрачной бумаге систему прямых линий, расстояния между которыми соответствуют 5' широты и долготы. Такую палетку накладывают на лист карты так, чтобы линии ее, кратные целым градусам широты  и долготы,   совпали  с соответствующими   линиями  картографической сетки. После этого оценивают положение определяемой точки относительно ближайших западной и южной линий палетки.

Задания и вопросы для самоконтроля

    1. Какие проекции применяют для создания топографических карт в Украине?
    2. В чем сущность создания проекции Гаусса?
    3. Почему проекция Гаусса носит название: «Равноугольная поперечно-цилиндрическая»
    4. Как изображаются меридианы и параллели в проекции Гаусса?
    5. На каких участках карты проекции Гаусса искажения максимальны?
    6. Для каких целей служат рамки листов карт проекции Гаусса?
    7. Что принимается за оси координат (абсцисса и ордината) в системе плоских прямоугольных координат Гаусса?
    8. Что означает запись значений координат: х = 6 346 650,  у = 4 522 800?
    9. В каких целях на топографических картах нанесена километровая сетка?
    10. Как определить с помощью топографической карты плоские прямоугольные координаты заданной точки?
    11. Для каких целей используют сокращенные координаты?
    12. В чем состоит решение прямой геодезической задачи?
    13.  В чем состоит решение обратной геодезической задачи?
    14. Какой порядок определения географических координат на топографической карте?

 

Видео